Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

New periodic orbits in the solar sail three-body problem

Biggs, J.D. and Waters, T. and McInnes, C.R. (2011) New periodic orbits in the solar sail three-body problem. In: Nonlinear Science and Complexity. Springer, pp. 131-138. ISBN 9789048198832

[img]
Preview
PDF
Biggs_JD_McInnes_CR_strathprints_New_periodic_orbits_in_the_solar_sail_restricted_three_body_problem_2008.pdf - Preprint

Download (449kB) | Preview

Abstract

We identify displaced periodic orbits in the circular restricted three-body problem, wher the third (small) body is a solar sail. In particular, we consider solar sail orbits in the earth-sun system which are high above the exliptic plane. It is shown that periodic orbits about surfaces of artificial equilibria are naturally present at linear order. Using the method of Lindstedt-Poincare, we construct nth order approximations to periodic solutions of the nonlinear equations of motion. In the second part of the paper we generalize to the solar sail elliptical restricted three-body problem. A numerical continuation, with the eccentricity, e, as the varying parameter, is used to find periodic orbits above the ecliptic, starting from a known orbit at e=0 and continuing to the requied eccentricity of e=0.0167. The stability of these periodic orbits is investigated.