Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

A polynomial path-following interior point algorithm for general linear complementarity problems

Illes, T. and Nagy, M. and Terlaky, T. (2010) A polynomial path-following interior point algorithm for general linear complementarity problems. Journal of Global Optimization, 47 (3). pp. 329-342. ISSN 0925-5001

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Linear Complementarity Problems (LCPs) belong to the class of -complete problems. Therefore we cannot expect a polynomial time solution method for LCPs without requiring some special property of the coefficient matrix. Our aim is to construct interior point algorithms which, according to the duality theorem in EP (Existentially Polynomial-time) form, in polynomial time either give a solution of the original problem or detects the lack of property , with arbitrary large, but apriori fixed ). In the latter case, the algorithms give a polynomial size certificate depending on parameter , the initial interior point and the input size of the LCP). We give the general idea of an EP-modification of interior point algorithms and adapt this modification to long-step path-following interior point algorithms.