Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

A polynomial path-following interior point algorithm for general linear complementarity problems

Illes, T. and Nagy, M. and Terlaky, T. (2010) A polynomial path-following interior point algorithm for general linear complementarity problems. Journal of Global Optimization, 47 (3). pp. 329-342. ISSN 0925-5001

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Linear Complementarity Problems (LCPs) belong to the class of -complete problems. Therefore we cannot expect a polynomial time solution method for LCPs without requiring some special property of the coefficient matrix. Our aim is to construct interior point algorithms which, according to the duality theorem in EP (Existentially Polynomial-time) form, in polynomial time either give a solution of the original problem or detects the lack of property , with arbitrary large, but apriori fixed ). In the latter case, the algorithms give a polynomial size certificate depending on parameter , the initial interior point and the input size of the LCP). We give the general idea of an EP-modification of interior point algorithms and adapt this modification to long-step path-following interior point algorithms.