Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Universality in protein residue networks

Estrada, Ernesto, New Professor's Fund - University of Strathclyde (Funder) (2010) Universality in protein residue networks. Biophysical Journal, 98 (5). pp. 890-900. ISSN 0006-3495

[img]
Preview
Text (strathprints014358)
strathprints014358.pdf - Accepted Author Manuscript

Download (849kB) | Preview

Abstract

Residue networks representing 595 nonhomologous proteins are studied. These networks exhibit universal topological characteristics as they belong to the topological class of modular networks formed by several highly interconnected clusters separated by topological cavities. There are some networks which tend to deviate from this universality. These networks represent small-size proteins having less than 200 residues. We explain such differences in terms of the domain structure of these proteins. On the other hand, we find that the topological cavities characterizing proteins residue networks match very well with protein binding sites. We then investigate the effect of the cutoff value used in building the residue network. For small cutoff values, less than 5Å, the cavities found are very large corresponding almost to the whole protein surface. On the contrary, for large cutoff value, more than 10.0 Å, only very large cavities are detected and the networks look very homogeneous. These findings are useful for practical purposes as well as for identifying "protein-like" complex networks. Finally, we show that the main topological class of residue networks is not reproduced by random networks growing according to Erdös-Rényi model or the preferential attachment method of Barabási-Albert. However, the Watts-Strogatz (WS) model reproduces very well the topological class as well as other topological properties of residue network. We propose here a more biologically appealing modification of the WS model to describe residue networks.