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A new extension of the generalized topological indices (GTI) approach is carried out to 

represent “simple” and “composite” topological indices (TIs) in an unified way. This 

approach defines a GTI-space from which both simple and composite TIs represent particular 

subspaces. Accordingly, simple TIs such as Wiener, Balaban, Zagreb, Harary and Randić 

connectivity indices are expressed by means of the same GTI representation introduced for 

composite TIs such as hyper-Wiener, molecular topological index (MTI), Gutman index and 

reverse MTI. Using GTI-space approach we easily identify mathematical relations between 

some composite and simple indices, such as the relationship between hyper-Wiener and 

Wiener index and the relation between MTI and first Zagreb index. The relation of the GTI-

space with the sub-structural cluster expansion of property/activity is also analysed and some 

routes for the applications of this approach to QSPR/QSAR are also given. 
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1. Introduction 

Topological molecular descriptors, the so-called topological indices (TIs), have proved to be 

of great usefulness and effectiveness in molecular design [1-3]. The main drawback of these 

descriptors is the lack of a unified way for their definition. As a matter of comparison all 

quantum atomic and molecular descriptors are defined on the basis of the molecular 

wavefunction. However, TIs are generally defined through the use of several invariants 

applied to different algebraic representation of molecular graphs [4]. The most used of such 

representations are the adjacency (A) and distance(D) matrices of the graph [4]. Despite the 

fact that these two matrices are not unrelated [5], the great variability and the ad hoc nature 

of the of the structural invariants used to define TIs gives the impression of a profound lack 

of unity among all these molecular descriptors. 

In an attempt for unifying some of the best known TIs one of the current authors introduced 

the generalized graph matrix, ΓΓΓΓ  [6]. Using this matrix and an approach based on a vector-

matrix-vector multiplication procedure [7, 8] it is possible to defined several of the 

“classical” TIs in an unified way with applications in structure-property relationships [9-11] 

and other branches of theoretical chemistry [12, 13]. According to this approach, the 

adjacency and distance matrices are particular cases of an infinite set of matrices generated 

from ΓΓΓΓ  [6]. At the same time several “classical” TIs, such as Wiener (W) index [14], 

Balaban J index [15], Harary H indices [16, 17], Zagreb M indices [18] and Randić (χ) 

connectivity index [19] are defined on the basis of the same graph invariant. Some of these 

indices, such as W, J, H1 and H2 are based on the distance matrix while the others (M1, M2 

and χ) are based on the adjacency matrix of the molecular graph. Thus, we propose to 

designate these descriptors as “simple” TIs due to the fact that they are based on a single 

topological matrix. On the other hand, there are several TIs that should be designated as 

“composite” because they are based on invariants that use more than one single matrix in 



their definition. These are the cases of descriptors like the Gálvez charge indices [20], the 

Molecular Topological Index (MTI) [21] or the hyper-Wiener index [22]. In the first two 

examples the indices are defined by using both the adjacency and distance matrices, while 

the last one is defined on the basis of the distance matrix and a matrix whose elements are the 

squares of the distances between pairs of vertices in the graph. Another index was introduced 

by Gutman [23] in the context of the Schultz molecular topological index [21] and has been 

designated as the Gutman molecular topological  index in the Todeschini-Consonni book 

[24]. It is based on a combination of the adjacency and distance matrices and deserves the 

qualification of “composite” TI. Among these descriptors the Schultz MTI [21] and the 

hyper-Wiener indices [22] have received a great deal of attention in both mathematical and 

chemical literature [23, 25-29]. In the current work we propose to extend our GTI approach 

to include not only “simple” but also “composite” TIs, such as MTI and hyper-Wiener index. 

In doing such extension we define the GTI-space, from which simple and composite GTIs 

are particular subspaces. According to this approach new GTIs can be obtained by linear 

combinations of other GTIs, which can explain the relationships previously found by others 

between the composite MTI and hyper-Wiener with the simple Wiener index.  

2. Generalized Topological Indices 

Let ),( EVG  be a molecular-graph with nV =  vertices and mE =  edges. Let ijd  be 

the entries of the nn ×  topological distance matrix of the graph ),( EVG . The GTI associated 

to the graph ),( EVG  is defined by the following vector-matrix-vector formula: 
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where C is a constant and u  and v  are column vectors whose components are given by 
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The ΓΓΓΓ  matrix is the so-called generalized molecular-graph matrix whose nn × entries are 

expressed in terms of the topological distance through 
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The vectors ),,,( 21 nwwww l=  and ),,,( 21 nssss l=  contain the weighting 

parameters for differentiating heteroatoms in certain TIs, such as the valence connectivity 

index. In general, for TIs 0)0,,0,0( === lsw . 

From equation (1), each GTI can be written in the following form: 
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where diam(G) = max (k) is the diameter of the graph G, i.e. the largest geodesic (k) in the 

graph G , 
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The k-th order geodesic (shortest path) matrix )(k∆ of the graph G is defined by the 

following entries: 

[ ]




=
≠

=∆
.graph in   if    ,1
,graph in   if   ,0)(

Gkd
Gkd

G
ij

ijk
ij        (7) 

And, each geodesic-bracket 
G

ji,  is defined by  
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Functions ),;( qyGui and ),;( rzGvi adopts the form: 



[ ] [ ] [ ]
qGdiam

k

k
i

k
iii GNykGGwwqyGu 








+δ+= ∑

=

−
)(

2

)(1),,;( ,     (9) 

[ ] [ ] [ ]
rGdiam

k

k
i

k
iii GNzkGGssrzGv 








+δ+= ∑

=

−
)(

2

)(1),,;( ,     (10) 

Where [ ]Giδ  is the classic degree of the i-th vertex in the graph G, whereas the quantity 

[ ]GN k
i

)(  is the number of vertices at distance k from the i-th vertex: 
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Equation (4) shows that any GTI can be separated in terms of the contributions of pair 

of vertices at the same topological distance in the graph. Each )(kη  term defines the 

contribution to GTI of all interactions between pairs of vertices separated at distance k in the 

graph. These contributions are scaled by two real parameters through the kc  coefficients. The 

diameter of the graph is a global descriptor and its presence in definition (4) reveals the 

dependence of any GTI on the ‘size’ of the molecular-graph. On the other hand, the 

molecular-connectivity relationship among atoms in the molecule defines the ‘shape’ of the 

molecular graph. This ‘shape’ is coded by the so-called geodesic-brackets (see equations 8). 

Equations (9) and (10) show that the functions u and v are the generalization of the ‘classic’ 

vertex degree notion. Through these functions u and v and by settling the x and p parameters, 

a pair of weights is assigned to each vertex in the graph. On each vertex these weights code 

the topological environment around it. From the previous analysis, it is clear that the 

codification of the topological complexity of any molecular-graph relies on the [ ]GN k
i

)(  

quantities, defined by equation (11).  

3. GTI-Space and “Simple” TIs 

The set of all GTI forms a non-linear real space of functions depending on (2n+6) 

parameters: the scalars x, y, z, p, q, r, and components of ),,,,( 21 nwwww l= and 



),,,( 21 nssss l=  vectors. This space will be termed the GTI-space. An important subspace 

of this space is formed by the “classic” topological indices. From (1), it is straightforward to 

obtain several of the well-known classical indices. For instance, the Zagreb indices, ( )GM1  

and ( )GM 2 ; the Randić connectivity index, ( )Gχ ; the Wiener index, ( )GW , the Balaban 

( )GJ  and the Harary numbers ( )GH1  and ( )GH 2 , which will be designated as ( )GH k , are 

expressed as follow: 
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For the sake of simplicity we have used the following compact symbol when 

0)0,,0,0( == lw and 0)0,,0,0( == ls :  
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4. GTI-Space and “Composite” TIs 

The first composite index that we will analyze here is the one introduced by Gutman 

in the context of the MTI [23]. It was originally defined on the basis of the adjacency and 

distance matrices as follows: 
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This index can be simply written in the context of GTI as follows: 
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On the other hand, the Schultz molecular topological index ( )GMTI  [21] was originally 

defined as follows: 
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where v is the column vector of vertex degrees. MTI can be defined in the context of the GTI 

approach as follows: 

( ) .
001
011

000
011

GG

GMTI 







+








=        (22) 

Schultz and Schultz defined a reciprocal molecular topological index, which is based on 

the matrix of reciprocal topological distances RD  [30]: 
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This index is expressed as follows in the GTI context: 
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Finally, we will consider the hyper-Wiener index introduced by Randić [22] and 

generalized by Klein et al. [25]. According to the general definition of this index [25]: 
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 Thus, it is easy to see that it can be expressed using the generalized graph matrix as 

follows: 
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In this section we have been able to express several composite TIs in terms of the GTI 

approach. Accordingly, all these composite TIs are not only expressed in an unified way but 

also they are expressed using the same algebraic expressions as for the simple TIs, which 

indicates a direct route for the generalization of both types of descriptors. 

5. Generalization of “Simple” and “Composite” TIs  

From the previous results, we postulate a new class of GTI defined by: 
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where iγ ′  is a coefficient modifying the generalized graph matrices. Thus, for a given set of 

parameters y, z, q, r, and components of ),,,,( 21 nwwww �= and ),,,( 21 nssss �=  vectors, 

we obtain 
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where iγ  coefficients contain the information of both C and iγ ′ . The Eq. (28) can be written 

in the equivalent form: 
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Equation (28) defines a linear subspace of GTIs. Accordingly, these “composite” TIs 

are linear combinations of other “simple” descriptors. Lets take, for instance, the expression 

(22) defining MTI in the context of the GTI-space. It is evident that the first bracket of this 

expression corresponds to the expression of the Zagreb M1 index given by expression (12). 

The second bracket can be expressed as follows: 
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This index was originally defined by Müller et al. [31] and by Mihalic et al. [32] and called 

MTI´ index. Thus, using Zagreb 1M  and ( )GS  we arrive to the conclusion that 

SMMTI += 1 , which was previously derived by Gutman [23] (see that in Gutman paper 

[23] as well as in Todeschini-Connsoni book [24] the 1M  is designated as 2M , which can 

produce some confusion with the second Zagreb index). 

In the case of the hyper-Wiener index it is easy to identify the first bracket as the Wiener 

index and the second one as the sum of the squared distances in the graph, which is known as 

the unnormalized second moment of distances, 2D . Then, it is obvious that 

( )22/1 DWWW +=  as previously recognized by Klein et al. [25]. Thus, it is evident from 

the previous results that the GTI-space approach permits to find mathematical relations 

between TIs. Of course, the further exploration of other GTI-space properties (metric, 

topological, etc.) will make possible the discovery of new and unnoticed relationships 

between these descriptors. 

6. GTI-Space: Some routes to applications 

One of the most important advantages that the use of the GTI offers to develop 

QSAR/QSPR models is the possibility of optimizing TIs to describe a particular property, P 

[9-12]. Saying it in other words, TIs are ad hoc molecular descriptors which are not optimal 

for describing a particular property/activity. They correspond to an initial “configuration” of 

the GTI parameter space that need to be optimized to describe P in an optimal way. A full 

analogy can be found with the use of quantum chemical molecular approaches where an 

optimal geometry is searched for minimizing the energy of the molecule. Here, the initial 

atomic coordinates are the non-optimal set of parameters which are optimized to minimize 

the molecular energy. Thus, the optimization of the GTIs consists in finding the best set of 

parameters that minimize the error in predicting a property/activity under study. For the sake 

of simplicity we consider here a linear model relating the property P and the GTIs: 
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Here we can consider the coefficients iγ  of the GTI as the coefficients of the regression 

model, which means that the linear combination of GTIs obtained for describing a specific 

property/activity is also a GTI: 
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This approach, which considers a “topological function” as a new TI, has been 

previously used in the literature, in particular by considering a linear discriminant function 

based on TIs as a “super-TI” to discriminate/predict other biological activities [33].  

On the other hand, we have previously shown that the GTIs can be expressed as linear 

combinations of substructures ξ  of the graph G, ( )ξ,Gf , which permits to write the 

expression (32) as a sub-structural cluster expansion of the form [34, 35]: 

[ ] ( ) ( )∑
⊆

=
G

f GfPGP
ξ

ξξ ,          (34) 

where the parametric coefficients ( )ξfP  depend exclusively on the GTI coefficients iγ  and 

( )ξ,Gf  depends solely on the way in which the sub-structures embeds in the graph. 

7. Concluding Remarks 

One of the most important targets in science is the development of theories and 

approaches explaining (apparently) diverse phenomena in an unified way. The best known 

example is the unified field theory, which is an attempt to unify all the fundamental forces 

and the interactions between elementary particles into a single theoretical framework. In a 

much modest level the current approach pretends to represent several disparate mathematical 

representations of a discrete object in an unified formulation. There is both theoretical and 

practical appeal for atempting the unification of TIs under a common umbrella of a 

generalized graph approach. On the first side, the generalized approach represents a 



condensation of great part of the knowledge about topological molecular invariants in a 

formal way. This permits to understand the nature of these descriptors, their 

interrelationships and structural interpretation in a better way than by studying TIs on a one-

by-one basis. On the practical side, the GTI-space permits the optimization of the TIs to 

describe a property/activity in a most efficient way than the unoptimized descriptors which 

have been introduced in an ad hoc way. The facilities offered by the current approach to 

identify mathematical relationships between TIs, which are further translated into 

intercorrelations between such indices, permit to avoid the unnecessary proliferation of 

“new” topological descriptors. We hope that the further exploration of algebraic, metric and 

topological properties of GTI-space will open new avenues in chemical graph theory. 
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