Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Communicability graph and community structures in complex networks

Estrada, E. and Hatano, N. and , Institute of Industrial Science, University of Tokyo (Funder) and , New Professors Fund University of Strathclyde (Funder) (2009) Communicability graph and community structures in complex networks. Applied Mathematics and Computation, 214 (2). pp. 500-511. ISSN 0096-3003

[img]
Preview
PDF (strathprints014296.pdf)
strathprints014296.pdf

Download (592kB) | Preview

Abstract

We use the concept of the network communicability (Phys. Rev. E 77 (2008) 036111) to define communities in a complex network. The communities are defined as the cliques of a 'communicability graph', which has the same set of nodes as the complex network and links determined by the communicability function. Then, the problem of finding the network communities is transformed to an all-clique problem of the communicability graph. We discuss the efficiency of this algorithm of community detection. In addition, we extend here the concept of the communicability to account for the strength of the interactions between the nodes by using the concept of inverse temperature of the network. Finally, we develop an algorithm to manage the different degrees of overlapping between the communities in a complex network. We then analyze the USA airport network, for which we successfully detect two big communities of the eastern airports and of the western/central airports as well as two bridging central communities. In striking contrast, a well-known algorithm groups all but two of the continental airports into one community.