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Abstract. Three measures of clumpiness of complex networks are introduced. The 

measures quantify how most central nodes of a network are clumped together. The 

assortativity coefficient defined in a previous study measures a similar characteristics 

but accounts only for the clumpiness of the central nodes that are directly connected to 

each other. The clumpiness coefficient defined in the present paper also takes into 

account the cases where central nodes are separated by few links. The definition is 

based on the node degrees and the distances between pairs of nodes. The clumpiness 

coefficient together with the assortativity coefficient can define four classes of 

networks. Numerical calculations demonstrate that the classification scheme 

successfully categorize 30 real-world networks into the four classes of clumped 

assortative, clumped disassortative, loose assortative and loose disassortative networks. 

The clumpiness coefficient also differentiates the Erdös-Rényi model from the 

Barabási-Albert model, which the assortativity coefficient could not differentiate. In 

addition, the bounds of the clumpiness coefficient as well as the relations among the 

three measures of clumpiness are discussed. 
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1. Introduction 
Graph and networks are ubiquitous in physics, ranging from fundamental physics [1-4] 

to applied socio- and econophysics [5, 6]. Despite the long tradition in studying physical 

objects by means of graphs, novel applications continuously arise posting new 

challenges for theoretical and mathematical physicist. The recent explosion of works 

studying “complex networks” is one of the sources of new concepts and theoretical 

problems [7-11]. The best-known examples are the concepts of “small-worldness” [12] 

and “scale-freeness” [13], which have produced an avalanche of new results in this field 

[7-11]. Another area of intensive research is stimulated by the necessity of defining new 

measures characterizing the topological structure of complex networks [14], such as the 

identification of the most central nodes in a complex network [15]. These studies on 

network “centrality” are crucial for understanding several effects on complex networks. 

Among them, we can mention the resilience of networks to intentional attacks [16], the 

identification of the most influential individuals in a social network [17] as well as the 

protection of the keystone species in an ecosystem [18, 19]. By central, we mean a node 

having the largest value of a graph theoretic parameter (centrality) [20], which 

characterize a topological property of this node in the network, such as its number of 

connections (degree) [17], the number of shortest paths passing through it (betweenness 

or load) [17], its relative closeness to the rest of nodes in the graph (closeness) [17], or 

its participation in all substructures of the network (subgraph centrality) [21].  

It has been shown that the identification of the most central nodes in a network is 

not enough for solving several practical issues. For instance, it has been found that if the 

most central nodes are clumped together in a network, the consequence for network 

resilience, transmission of an epidemics or ecological conservation are quite different 

from the cases where they are spread across the network [22]. Newman introduced an 

“assortativity” coefficient as a measure to quantify this characteristic of certain complex 
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networks [22]. This index is simply the Pearson correlation coefficient of the degrees at 

either ends of a link. It thus accounts only for the “clumpiness” of the central nodes that 

are directly connected to each other in the network. In the cases where the central nodes 

are separated by two or only few links, the network can display disassortative properties  

in spite of the fact that the most central nodes are practically clumped together in the 

graph. 

We here propose measures that account for the “clumpiness” of the most central 

nodes in a network. The measures defined here are referred to the clumpiness coefficient 

(Section 3) and the spectral measure of clumpiness (Section 4). A desired characteristic 

of the measures is that they have the maximal value when the most central nodes are as 

close as possible. The clumpiness should decrease when we reduce the centrality of the 

nodes. In addition, the increment in separation of these central nodes should also 

decrease the clumpiness of the network. We then present in Section 5 numerical 

calculations of the clumpiness measures of various networks. In particular, we propose 

categorizing networks on the basis of combination of the clumpiness and the 

assortativity. 

2. Preliminaries  

2.1. Elementary definitions 

Before going into the study of the clumpiness, let us first present some elementary 

definitions as well as state our motivation of defining the clumpiness. A graph invariant 

is defined to characterize an inherently graph-theoretic property of a graph [23]. It is 

defined as a measure based on graph parameters that do not change with a change of 

the labels of nodes/links. By graph parameters, we understand any local or global 

topological property of a graph, such as node/link properties, matrix or vector 

representation of the graph, etc. Here we are dealing with simple, connected graphs 

),( EVG = , where V  is the set of nodes of cardinality nV =  and E  is the set of links 
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representing relationships between the nodes. The degree of a node i , also known as the 

degree centrality, is designated as ik  and it is equal to the number of links incident to i . 

The topological distance ijd  is the minimum number of links separating the node i  

from a node j  [24]. Vectors and matrices will be represented by lower case and upper 

case bold letters, respectively. 

Those graphs that can be transformed to each other by simply changing the 

labeling of the nodes are called isomorphic. More formally, two graphs ( )EVG ,=  and 

( )EVG ′′=′ ,  are isomorphic if there exists a one-to-one function, called an 

isomorphism, from V  onto V ′  such that Epq ∈  if and only if Eqp ′∈′′  [25]. Any 

graph invariant is exactly the same for any pair of isomorphic graphs.  However, there 

are pairs of nonisomorphic graphs that have identical values of certain graph invariants. 

These graphs will be called here to be degenerate with respect to this graph invariant. 

The discriminant power of a graph invariant is simply the proportion of nonisomorphic 

graphs which are differentiated by a graph invariant.  

2.2. Motivation 

The topological structure of complex networks is also complex. Consequently, the 

architectural organization of complex networks is not expected to be characterized by a 

single index or measure. A typical example of this situation is the characterization of a 

network on the basis of its node degrees. A now “classical” way of such 

characterization is to use the degree distribution, which indicates the probability of 

finding a node of certain degree (or range of degrees) in the network. Accordingly, a 

network can display a uniform, exponential or power-law degree distribution of its node 

degrees. The degree distribution, however, tells us nothing about the correlation 

between nodes. For instance, if a network has a power-law degree distribution, we know 

that there is a low probability of finding a high-degree node in the network, but nothing 
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is said about whether the high-degree node is connected to another high-degree node or 

to a low-degree one. Consequently, we can consider the degree distribution as a “zeroth-

order” measure or index of a complex network. 

A step forward in the characterization of the organization of nodes in a network is 

to measure how the nodes are connected to each other. The assortativity coefficient is a 

naïve characterization of this situation, in which we obtain information as to how high-

degree and low-degree nodes are connected to each other. A positive assortativity 

coefficient indicates that high-degree nodes are preferentially attached to other high-

degree nodes. On the other hand, a negative assortativity coefficient indicates that high-

degree nodes are preferentially connected to low-degree nodes. Consequently, the 

assortativity coefficient is a “first-order” measure or index of a complex network.  

A first-order measure such as the assortativity coefficient tells us nothing about 

the way in which nodes are organized beyond the nearest neighbors. For instance, in an 

assortative network, some high-degree nodes are linked to other high-degree nodes, but 

some high-degree nodes can be separated by very few links or by long paths. In the 

former case, the high-degree nodes form a clumped cluster while in the latter they are 

spread across the network. Neither of these two situations are distinguished by the 

assortativity coefficient as it attempts to characterize only the “first-order” topological 

characteristics of the network.  

A real-world example of this situation is illustrated in Figure 1. The network 

illustrated in Figure 1A corresponds to the inmates in a prison and that in Figure 1B to 

the food web of St. Marks. Both networks are almost of the same size, 67=N  and 

48=N , respectively, both display uniform degree distributions and have almost 

identical assortativity coefficient, 103.0=r  and 118.0=r , respectively. However, 

while in the prison network the high-degree nodes are spread across the network, they 
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are clumped together in the food web. This difference can have dramatic implications 

for the structure and functioning of these two systems.  

Insert Figure 1 about here.  

In a similar way we can find disassortative networks, where high-degree nodes are 

preferentially attached to low-degree nodes, we can also find that the high-degree nodes 

can be separated by only two links with a low-degree node acting as a bridge or by very 

long paths. This situation is illustrated in Figure 2 for a sexual network in Colorado 

Springs (A) and the transcription interaction network of E. coli (B), which have almost 

equal negative assortative coefficients. In the former case the high-degree nodes are 

separated by very long chains while in the latter case most of the high-degree nodes are 

clumped together separated by only two or three links. 

Insert Figure 2 about here. 

3. “Clumpiness” coefficient 

3.1. The definition of the clumpiness coefficient 

The clumpiness coefficient of the degree centrality in the graph G  is defined here by 

the expression 

( ) ( )
( )

∑
−

>

=Λ
2/1

,,
nn

ji ij

ji

d

kk
kG αα ,        (1) 

where 0>α  is a real parameter. Our motivation for using an inverse power-law 

potential in expression (1) is because of its similarity with several well-known 

potentials, such as the Coulombic and gravitational ones, as well as others accounting 

for the inter-molecular interactions, e.g., Lennard-Jones potential. According to the 

above definition, the clumpiness coefficient increases with the increase of the degrees of 

the nodes in the network and decreases with the increase in the separation between these 

nodes. 

As the selection of the most appropriate value for α  here remains empirical we 

have calculated the clumpiness coefficient ( )α,, kGΛ  for different values of this 
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parameter, namely 5,4,3,2,1=α  for the series of 19 cubic regular graphs. These graphs 

have 10 nodes and 15 links with all nodes having degree equal to 3. For each value of 

α  we normalized the values of ( )α,, kGΛ  by the maximum value of the clumpiness 

obtained for this series of graphs. Then, we have plotted the values of the normalized 

clumpiness coefficient for the 19 graphs for every specific value of α . As can be seen 

in Fig. 3 the clumpiness coefficient for 1=α  have different values for 11 of the 19 

graphs. The rest of the clumpiness coefficients for 5,4,3,2=α discriminate 12 out of the 

19 graphs. In addition, the largest percentage of variation in the normalized clumpiness 

coefficient also displayed in Fig. 3 is obtained for 2=α . Consequently, we select the 

value of 2=α  in the clumpiness coefficient (1) for the rest of the calculations to be 

carried out in this work. It is worth mentioning that the results obtained with 2=α  are 

very similar to those obtained for 1=α , which corresponds to the well-known 

Coulombic and gravitational potentials. 

Insert Figure 3 about here. 

Let ( )nkkk 21=k  be a row vector of the node degrees in the graph and let 

D  be the topological distance matrix of the graph, whose (i,j) element is ijd . We will 

denote by the symbol α∗D  the α th entrywise power [26] of D , that is, a matrix in 

which every entry of D  is raised to the power α . Then, let R  be the matrix defined as 

( ) IIDR −+= −∗ 2 ,         (2) 

where I  is the identity matrix. R  is the matrix whose elements are given as follows: 

( )




=
≠

=
−

.for          0
,for  2

ji
jidR ij

ij         (3) 

Then, we have 

( ) ( )Rkk TG
2
1

=Λ .         (4) 
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The formula (4) was originally proposed by Estrada et al. 10 years ago when studying 

modifications of the Harary-like topological indices in chemistry [27]. 

In a similar way, the clumpiness coefficient can be obtained from a clumpiness 

matrix, which is defined as follows. Let ( )nkkkdiag ,, 21 =K  be a diagonal matrix of 

the node degrees of the graph and let R  be the matrix previously defined. Then the 

clumpiness matrix is 

KRKΞ = ,          (5) 

whose ( )ji, -entries are 
kikj

dij( )2  and the diagonal entries are zeroes. The clumpiness 

matrix will find other important applications in the current work. The clumpiness 

coefficient is then obtained as the half-sum of the entries of this matrix 

( ) ( )ΞuuTG
2
1

=Λ ,         (6) 

where the vector u  is an all-one vector. 

3.2. Clumpiness coefficient for certain classes of graphs 

We now calculate the clumpiness coefficient explicitly for four classes of graphs. 

Let nP , nC , nS  and nK  be the path, cycle, star and complete graphs of n  nodes, 

respectively [28]. We obtained the following formulas for the clumpiness coefficient in 

such graphs: 
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( ) ( )
2

1 3−
=Λ

nnKn .         (10) 

For large values of n  we have  

( ) ( ) ∑∑∑
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P .      (11) 

Now, let us consider the zeta function ( )2ς   

( )
6

12
2

1
2

πς == ∑
∞

=x x
         (12) 

and the harmonic series nH  for a given value of n   

∑
=

=
n

x
n x

H
1

1 .          (13) 

It is known that  

( ) γ=−
∞→

nH nn
lnlim ,         (14) 

where 5772156649.0=γ  is the Euler-Mascheroni constant. We can thereby 

approximate ( )nPΛ  for large n  as 

( ) ( ) ( )[ ]γπ
+−

−
≈Λ nnPn ln4

3
22 2

.       (15) 

Following similar calculation, we can obtain the values of ( )nCκ  for large n  as 

( )








+

=Λ
      odd.   for        

3
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        even,  for     8
3

2

2

2

nn

n
n

n

Cn π

π

      (16) 

It is straightforward to realize that ( ) 2nSn ≈Λ  and ( ) 4nKn ≈Λ  for large n . For very 

large values of n , we have ( ) ( ) 3/22 2 −≈Λ nPn π  and ( ) 3/2 2nCn π≈Λ . Because 

( )
3

2
3

22 22 nn ππ
<

− , we then have ( ) ( )[ ]
3

2ln4
3

22 22 nnn πγπ
<+−

− , which 

immediately implies that ( ) ( )nn CP Λ<Λ . We thus have 
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( ) ( ) ( ) ( )nnnn PCSK Λ>Λ>Λ>Λ . This order follows our intuition; in the complete 

graph every vertex has the maximal possible degree and every pair of vertices are 

connected. The star graph, which is a subgraph of the complete graph, keeps one vertex 

with the maximal possible degree and all non-connected nodes are separated by only 

two links from each other. Finally, the path graph appears intuitively as the least 

clumped structure due to the low degree of its nodes (only one and two) and because of 

the large separation among them. 

3.3. Bounds for the clumpiness coefficient 

Following the line of the previous subsection, we can obtain the general bounds for the 

clumpiness coefficient. First, we can prove the following:  

Lemma 1. Let ),( EVG =  be a connected graph having n  nodes. Then for any edge 

Ee ∈ , we have 

( ) ( ).GeG Λ≤−Λ          (17) 

Proof. The result immediately follows from the following observations. For any node 

Vi ∈ , we have that eG
i

G
i kk −> , where G

ik  is the degree of the node i  in the graph G  

and eG
ik −  is the degree of the node i  in the graph eG − . Moreover, for any pair of 

vertices Vji ∈,  we have that G
ij

eG
ij dd ≥− , where eG

ijd −  and G
ijd  are the topological 

distances of the vertices i  and j  in the graphs eG − and G  respectively.  

Hence, we have 

( )
( ) ( ) ( )

( )eG
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eG
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eG
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ij
G
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G
j

G
i −Λ=≥≥=Λ ∑∑∑ −

−−−−

222 .    (18) 

Corollary 1. Let ),( 1EVG =  and ),( 2EVH =  be two connected graphs on n  vertices 

such that 21 EE ⊆ , then we have ( ) ( )HG Λ≤Λ . In particular, we have ( ) ( )nKG Λ≤Λ . 

A graph is said to be Hamiltonian if there is a cycle, i.e., a closed loop, which visits 

each node of the graph exactly once. 
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Theorem 1. Let G  be a connected graph having 2>n  nodes. Then, 

a) if G  is Hamiltonian then ( ) ( ) ( )nn KGP Λ≤Λ≤Λ , 

b) ( ) ( ))(GSG ∆Λ≥Λ  , where )(G∆ is the maximum degree of the nodes of G . 

Proof.  

a) Since G  is Hamiltonian, nP  is a subgraph of G . The result immediately follows 

from Corollary 1. 

b)  Clearly )(GS∆  is a subgraph of G . Thus the result is a consequence of Corollary 

1. 

Conjecture. Let T  be any tree and nP  and nS  the path graph and the star graph on n  

vertices, respectively. Then we have 

( ) ( ) ( ).nn STP Λ≤Λ≤Λ         (19) 

3.4. Relative clumpiness coefficient and classification of complex networks 

In this section we are interested in proposing a method of selecting a cutoff value for the 

clumpiness parameter Λ  of a graph in order to determine whether the graph is clumped 

or not. Let us consider a graph G  having n  nodes and m  links. We have already 

proved that the maximum value of Λ  for a graph with n  nodes is ( ) ( ) 2/1 3−=Λ nnKn . 

However, for our mn, -graph this means to create new links up to ( ) 2/1−= nnm . 

Instead we can think about the maximum value of Λ  that can be obtained for a graph 

having m  links. This is equivalent to rewiring the links of the mn, -graph to obtain the 

maximum clumpiness. The simplest way of doing that is to create the largest possible 

complete graph having m  links. In other words, we can divide the mn, -graph into a 

complete graph 
1nK  having m  links and 2n  isolated nodes with 21 nnn += . With this 
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intuition in mind we have that 
2

811
1

mn ++
= , which can be very well approximated 

to mn 25.01 +≈  for large m.  

Then, the maximum clumpiness that can be obtained by rewiring an mn, -graph is 

( ) ( ) 2/1 3
111

−=Λ nnKn . Consequently, if we normalize the clumpiness coefficient of the 

mn, -graph by dividing it by ( )
1nKΛ  we obtain the relative clumpiness coefficient 

( )GΦ , which is defined and bounded as 

( ) ( )
( )

1
1

20 3
11

≤
−

Λ
=Φ≤

nn

GG .       (20) 

The upper bound is obtained when the graph has ( ) 2/1−= nnm  links, i.e., for nK . The 

lower bound is reached for very large graphs, ∞→n . As we have already shown, the 

minimum value of Λ  is obtained for nP , which makes that ( ) 0→Φ nP  as ∞→n . 

The value of ( )GΦ  represents how clumped the graph G  is in relation to the most 

clumped graph that can be created by rewiring its links. Then, we can consider three 

classes of graphs: loose, clumped and very clumped. We consider that the graphs having 

less than 1/3 of the clumpiness of 
1nK are loose, i.e., ( ) 33.0≤Φ G , those having 

( ) 66.033.0 ≤Φ< G  are clumped and those having ( ) 66.0>Φ G  are very clumped. 

Then, we consider that any network having ( ) 33.0>Φ G  are clumped and those having 

( ) 33.0≤Φ G  are loose. 

3.5. Universality classes of complex networks 

Here we analyze hypothetical networks having different topological organization of the 

most central nodes. We refer only to the degree centrality but the extension to any other 

centrality measure is straightforward. In this context, we consider four universality 

classes of complex networks illustrated in Fig. 4. 

Insert Fig. 4 about here. 
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As we can see in Fig. 4a, one of these classes of networks is the one in which most 

central nodes are close to each other forming a clumped network. The mixing pattern of 

such networks consists of a series of highly connected nodes preferentially attached to 

each other while the less connected nodes are preferentially attached to other nodes with 

low connectivity. This mixing pattern is known as assortative mixing, that is “a 

preference for high-degree vertices to attach to other high-degree vertices” [22]. In this 

particular case we deal with clumped assortative networks. The clumped assortativity 

refers to the combination of an assortative mixing and a large clumpiness of the high-

degree nodes. These networks must display large topological homogeneity, probably 

showing good expansion characteristics, i.e., they do not contain structural bottlenecks 

[31, 32].  

If the most connected nodes of the network are preferentially attached to nodes of 

low connectivity but keep a small distance among them, the network displays a clumped 

disassortative architecture (Fig. 4b). The disassortative mixing refers to the pattern 

where “high-degree vertices are attached to low-degree ones” [22]. The clumped 

disassortativity is then the combination of a disassortative mixing and a large 

clumpiness of the most connected nodes. This could appear counterintuitive at first 

sight, but it is typical, for instance, of complete bipartite (or almost bipartite) graphs, in 

which a few high-degree nodes are linked to each other over only one step of a large 

number of low-degree nodes. This connectivity pattern produces the disassortative 

mixing of the network and the small distance (only two steps separate a high-degree 

node from another) between the high-degree nodes gives its clumped nature.  

On the other hand, the high-degree nodes in the network can be separated from 

each other by relatively large distances forming a class of not clumped, or loose 

networks (Fig. 4c). If these high-degree nodes are preferentially attached to each other 

leaving the least connected nodes to be directly interconnected, the network displays 
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assortative mixing. The mixing pattern of this network represents a type of loose 

assortative organization. A typical organization of these networks is the formation of 

communities in which every community displays assortative mixing pattern. This makes 

the network as a whole display such assortative mixing. However, the separation of the 

high-degree nodes in one community from the high-degree nodes in another makes the 

clumpiness of the network decrease significantly. This makes the network display a 

loose mixing pattern. The community structure in complex networks has been shown to 

play a significant role in the dynamic processes taking place on the networks [33, 34]. 

The fourth organizational type of networks is formed by the class of loose 

disassortative networks (Fig. 4d). In these networks the high-degree nodes are 

preferentially attached to low-degree nodes, which makes the network displays 

disassortative mixing. In addition, the high-degree nodes are separated from each other 

by a relatively large number of links, which produces a significant decrease of the 

clumpiness. 

3.6. Generalization of the clumpiness coefficient 

We now mention a possibility of generalizing the clumpiness coefficient to ones based 

on other graph parameters. There are several centrality measures that have been defined 

and applied for the study of complex networks. In general, the notion of centrality 

comes from its use in social networks [17]. Intuitively, it is related to the ability of a 

node to communicate directly with other nodes, or to its closeness to many other nodes 

or to the quantity of pairs of nodes which need a specific node as intermediary in their 

communications [20]. Among well-known centrality measures, we can mention the 

betweenness or load centrality, the closeness centrality and the eigenvector centrality 

[17]. Other measures such as the subgraph centrality [21] have been recently proposed 

in the literature.  
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The clumpiness coefficient can be generalized for any centrality measure. It is 

defined as the averaged value of the product of the centrality measure for all pairs of 

nodes jiCC  in the network divided by a power of the corresponding topological 

distance ijd  separating them: 

( ) ( )∑
<

=Λ
N

ji ij

ji

d

CC
CG αα,, .        (21) 

As can be seen from this expression, when the most central nodes are directly 

connected, 1=ijd , the clumpiness reaches its maximum. When the most central nodes 

are far away from each other, 1>>ijd , on the other hand, the clumpiness reaches its 

minimum. If c  is a column vector of the centrality measure, we have 

( ) ( )RccTCG
2
1,, =Λ α .        (21) 

4. Spectral measure of clumpiness 

4.1. Definition of the spectral measure of clumpiness 

In addition to the clumpiness coefficient defined in Section 3.1, we also propose a 

spectral measure of clumpiness based on the clumpiness matrix Ξ  defined in (5). Let 

{ }nεεε ,,, 21   be the nondecreasing order of the eigenvalues of Ξ . We propose to use 

the principal eigenvalue of the clumpiness matrix (5) as a spectral measure of 

clumpiness: 

η(G) = ε1 .  (22) 

As we emphasized in Section 2, this is a measure of clumpiness with a different 

discriminant power. 

The interpretation of this measure as a clumpiness index for a graph is given as 

follows. First of all we consider that the clumpiness index of a network is an additive 

function of node clumpiness, 
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∑
=

Λ=Λ
n

i
i

1

,           

where iΛ  represents the contribution of the node i  to the global clumpiness, which will 

be defined quantitatively later on. Now, let us consider a graph whose nodes can be 

ordered in nondecreasing order of clumpiness nΛ≥≥Λ≥Λ 21 . We can thereby form 

a cluster by locating the most clumped node(s) at the centre, then the second most 

clumped node(s), then the thirds and so forth. The clumpiness of a network can be 

understood as a measure of the cohesiveness of the nodes in this “clumpiness cluster”. 

In order to prove this meaning we first measure the participation of a node in the cluster 

by means of a column vector x , whose rth entry captures the relative departure of the 

node r from the centre o  of the cluster. The entries of the vector x , ix , take any values 

between zero and one. A value of zero corresponds to a node which is separated by an 

infinite distance from the centre of the cluster. In other words, 0=ix  indicates that the 

node i  displays a very low clumpiness in contrast with nodes which are close to o . We 

impose the restriction that the norm of this vector x  be one, 1=Txx .  

Now, let us define a measure for the cohesiveness of the clumpiness cluster, η . A 

large cohesiveness of the nodes in this cluster indicates that most of the nodes are close 

to the centre o , or in other words that most of the nodes display large clumpiness. If the 

cohesiveness of the nodes in the cluster is low, it indicates that the graph displays low 

clumpiness. Let us now define formally the cohesiveness measure η . We can define 

this measure for the cohesiveness of the cluster in a similar way as in spectral clustering 

techniques [29]: 

ΞxxT
n

i

n

j
jiij xxw == ∑∑

= =1 1
η ,        (23) 
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where α
ij

ji
ij d

kk
w =  is a weight assigned to every pair of nodes ( )ji,  in the graph. The 

function η  increases with the increase of the clumpiness of the nodes as well as with 

the closeness of the nodes to the centre of the cluster. A maximally cohesive cluster can 

be found by maximizing the expression (23), which according to the Rayleigh-Ritz 

theorem [30] is given by 

( ) 11max εη === xxΞxx TT

x
,        (24) 

where 1ε  is the spectral radius, the largest eigenvalue, of Ξ , which is nothing but Eq. 

(22). Then the spectral measure (22) measures the cohesiveness of the nodes in the 

clumpiness cluster, and consequently, it represents a spectral measure of clumpiness. 

According to the Rayleigh-Ritz theorem [30], the optimal value of the participation 

vector is 1xx = , where 1x  is the eigenvector corresponding to 1ε .  

The sum of a row or column of the clumpiness matrix Ξ  can be understood as the 

clumpiness of the corresponding node: 

∑=Λ
j

iji w           (25) 

Then the interpretation of the principal eigenvector of Ξ  as a relative participation of a 

node in the clumpiness cluster can be understood by means of the following analysis. 

The principal eigenvector of the matrix Ξ  is proportional to the row sum of a matrix M  

formed by summing all powers of the clumpiness matrix, weighted by the 

corresponding powers of the reciprocal of the principal eigenvalue: 

( )






 ++++= +−−−

∞→

1
1

32
1

21
1 1lim nn

n n
ΞΞΞΞM εεε       (26) 

Let us consider a graph formed by three nodes having the following order of node 

clumpiness 321 Λ>Λ>Λ . Then, we have that the sum of the rows of the matrix M  

follows the same order, 321 MMM >> . Owing to the previously mentioned 
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proportionality between the row sum of the matrix M  and the principal eigenvector of 

Ξ , we have ( ) ( ) ( )321 111 xxx >> . Using our approach for building the clumpiness 

cluster, the first node is located at the centre, then the node 2 and finally the node 3. 

Then, the value of ( )i1x , which is proportional to the closeness of the node i  to the 

centre of the cluster, measures the relative membership of such node to the cluster. 

4.2. Statistical mechanical interpretation of the spectral measure of 

clumpiness 

We here give a physical realization of the clumpiness matrix Ξ . This enables us to give 

a statistical mechanical interpretation of the spectral measure of clumpiness η(G) . 

We consider the tight-binding model, in which a particle moves among the 

nodes of a network. We assume that the hopping of a particle from one node to another 

is directly proportional to the degrees of the corresponding nodes. The physical intuition 

for this is as follow. We are considering connected networks. There is therefore always 

a path from one node to another. If the start node has degree ik , there will be ik  ways 

for the particle to leave the node. At the same time, if the goal node has degree jk , the 

particle can arrive at it through jk  different paths. We might then consider that the 

number of paths that the particle can follow from a node to another is proportional to 

the degrees of the two nodes. On another account, we can consider that the hopping is 

inversely proportional to the length of the path connecting both nodes. In short, we can 

make the hopping proportional to ( )α
ij

ji

d

kk
, which is equivalent to saying that we consider 

the following tight-binding Hamiltonian: 

( ) ( ) iiVijji
d

kk
tH

i
i

ji ij

ji ∑∑ ++−=
,

α .      (27) 
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For simplicity, we hereafter make VVii =  for every node of the network and we 

immediately obtain that the Hamiltonian is equal to ΞIH tV −= , where I  is the 

identity matrix of order n, and Ξ  is defined in (6): 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) 
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H     (28) 

From now on, we set the origin of the energy scale to 0=V  and the unit of the 

energy scale to t = 1. We then use the Schrödinger equation for calculating the energy 

associated with the clumpiness of central nodes in a complex network: 

jjj E ψψ =H ,         (29) 

where jE  and jψ  are the eigenvalues and eigenvectors of the H  matrix, respectively. It 

is evident that jjE ε−= , where jε  are the eigenvalues of Ξ . Consequently, we can 

define a clumpiness partition function for the network 

∑
=

− ===
n

j
C

jeeeZ
1

TrTr βεββ ΞH .       (30) 

We thus take account of lower eigenvalues than Eq. (22) with less weights 

specified by β . Using the clumpiness partition function, we can define the clumpiness 

entropy of the network 

( ) ( )[ ]∑
=

−−=
n

j
CjjBC ZpkGS

1
ln, βεβ  ,      (31) 

where jp  is the probability that the system occupies a microstate of energy jε , 

C
j Z

ep
jβε

= .          (32) 
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Then, we can write down Eq. (31) in the following equivalent way: 

( ) ∑ ∑
=

+−=
n

j j
jCBjjBC pZkpkGS

1
ln, εββ ,      (33) 

which, by using the standard relation TSHF −= , suggests the expressions for the 

clumpiness enthalpy and free energy of the network: 

( ) ( )∑
=

−=
n

j
j

C
C

je
Z

GH
1

1, βεεβ  ,       (34) 

and 

( ) CC ZGF ln, 1−−= ββ .        (35) 

In the zero temperature limit, we have  

1

1

βεβεβ eeTre
n

j

j →= ∑
=

Ξ  for large β  or as 0→T .     (36) 

Then, it is straightforward to realize that, in the same limit, the clumpiness enthalpy and 

free energy are equal to the negative of the spectral radius of Ξ : 

( ) ( ) 10,0, ε−=→=→ TGFTGH CC .      (37) 

In other words, the spectral clumpiness coefficient, ( ) 1εη =G , is the negative of the 

Gibbs free energy of the network in the zero temperature limit. In this limit, the network 

is “frozen” in the ground state which has the interaction energy 1ε− . 

5. Numerical results  

5.1. Artificial graphs 

Our objective in this subsection is to study the general properties of the clumpiness 

coefficient and the statistical mechanical properties related to it in a series of small and 

simple graphs. With this objective in mind, we consider all possible 3-regular graphs 

(i.e. those graphs previously defined whose every node has degree 3) with 10 nodes. It 

is evident that for k-regular graphs, the clumpiness coefficient is given by 
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( )
( )

∑
−

=Λ
2/1

2
2 1nn

ij ijd
k  and we can study the specific influence of the separation of nodes 

to the graph clumpiness.  

The average clumpiness coefficient for the 3-regular graphs studied varies from 

3.8 to 4.5. In terms of the relative clumpiness coefficient ( )GΦ  in Eq. (20), this 

represent a change from 45.7 to 54%. According to the previous classification we have 

established all these graphs are clumped but no one is very clumped. The lowest value 

is obtained for the only one graph with the diameter (the maximal distance) equal to five 

(Fig. 5a), while the largest value is obtained for the Petersen graph (Fig 5b), in which 

every pair of non-connected nodes are separated by two links only. The average 

clumpiness coefficient Λ  is poorly discriminant for these graphs. For instance, 5 non-

isomorphic graphs are degenerate, having the same value of 222.4=Λ ; other three 

pairs of non-isomorphic graphs are also degenerate with identical values of the 

clumpiness coefficient, respectively. In short, the average clumpiness coefficient Λ  is 

able to differentiate only 63% of the non-isomorphic 3-regular graphs studied. 

Insert Figure 5 about here. 

We next calculated the spectral measure of clumpiness, ( )Gη , which is equal to 

the negative Gibbs free energy in the zero temperature limit, 1ε− . The lowest and 

highest values are obtained for the same graphs as for the relative clumpiness 

coefficient ( )GΦ . In general, both magnitudes are strongly correlated with a correlation 

coefficient of 0.999, which is expected and desired because they are designed to 

measure the same network property. However, the spectral clumpiness coefficient is 

more discriminant than the relative clumpiness coefficient ( )GΦ  for this series of 

graphs. In fact, ( )Gη  discriminates 84% of the 3-regular graphs, showing identical 

values for a triple and a pair of non-isomorphic graphs only. 
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Finally, we calculated the statistical mechanical parameters, CS , CH  and CF  for 

these 19 regular graphs. All the calculations are carried using 1.0=β . Remarkably, 

these functions discriminate 100% of the nonisomorphic regular graphs. In other words, 

there is not any single pair of graphs with identical values of these functions. The 

maximal entropy is reached for the graph having the lowest clumpiness, which is the 

graph having the lowest Helmholz and Gibbs free energies. On the other hand, the 

Petersen graph, which is the most clumped one, appears to be the least entropic 3-

regular graph with 10 nodes. In general, there are nice correlations between the 

clumpiness coefficient and these statistical mechanical parameters. 

In summary, the clumpiness coefficients as well as the statistical mechanical 

parameters changes regularly with the tiny changes in the structures of the graphs, 

which is a desired property for any graph theoretic descriptors. Based on our argument 

in Section 2 about the graph invariants and nonisomorphic graphs, we can say that the 

statistical mechanical parameters are more appropriate as clumpiness parameters than 

the single clumpiness coefficient, with their greater discriminant power. 

5.2. Randomly evolved networks 

In his seminal paper on assortative mixing in networks, Newman shows that for 

Erdős-Rényi (ER) random network, where links are placed at random regardless of the 

node degree, the assortativity coefficient is 0=R  in the limit of large graph size [22]. 

In addition, Newman also found that the Barabási-Albert (BA) model [13] shows no 

assortative mixing at all, showing that 0→R  as ( ) nn /log2  as n  becomes large [22]. 

Consequently, neither the ER nor the BA model reproduces the mixing patterns of 

networks and they are not able to reproduce any of the four universality classes found 

here.  

We investigated how the relative clumpiness coefficient ( )GΦ  changes with the 

changes in the average degrees in these two models of random networks. In both 
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models, each random network starts with g nodes and new nodes are added 

consecutively in such a way that a new node is connected to exactly g nodes chosen 

randomly from the already existing nodes. The average degree k  is then exactly equal 

to g2 . The new edges are attached according to a specific probability distribution, 

namely, the uniform distribution for the ER model and the preferential attachment 

mechanism for the BA model. We studied random networks grown by these two 

mechanisms up to 1000=n  nodes, changing systematically the value of k  from 4 to 

16. For every value of k , we generated 100 random networks.  

We found (Fig. 6) that the relative clumpiness coefficient ( )GΦ of the networks 

generated by the ER model scales as a power-law of g, σkER ~Φ , where 65.0=σ  

(the correlation coefficient of the fitting is 0.995). All the ER networks obtained for k  

between 4 to 16 are loose, displaying low clumpiness. In order to obtain networks with 

large clumpiness with the ER model, we need values of 40≥k , which corresponds to 

very dense networks.  

Insert Figure 6 about here. 

On the other hand, the relative clumpiness coefficient ( )GΦ  of the BA networks 

scale as an exponential of k , ( )kBA σexp~Φ , where 200.0=σ  (see Fig. 6). The 

correlation coefficient of the fitting is 0.997. Using this model, it is possible to generate 

clumped networks for values of 6.17≥k . A bigger difference is obtained when we try 

to generate very clumped networks. Using the ER model we need 115≥k , while by 

using the BA model a very clumped network can be obtained by using 25≥k . The 

open question then is how to generate loose networks with large average degree. 

Newman [22] has remarked that it “is an open question what type of network evolution 
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processes could explain the values of R observed in the real-world networks”. We also 

should take into account the clumpiness in considering this question. 

The next question is to analyze how the statistical mechanics parameters change 

with the change of the clumpiness for randomly generated graphs. As a model 

parameter we selected the clumpiness entropy and analyze how it changes with the 

change of the relative clumpiness coefficient. In Fig. 7 we illustrate the plot of these two 

network parameters for graphs generated by using the ER and BA models having 1000 

nodes. As can be seen both plots fit perfectly to a sigmoid function of the form 

( ) ( )cb
aS

+Φ+
==

exp1
001.0β        (39) 

The correlation coefficient in both cases is larger than 0.99999, and the significance of 

the empirical parameters a , b  and c  will be evident further. 

Insert Fig. 7 about here. 

The plot in Fig. 7 clearly indicates that the clumpiness entropy of random 

networks change dramatically fast from its maximum to almost zero for a very narrow 

window of clumpiness values. For instance, for the case plotted in Fig. 7 the entropy 

changes from the maximum value ( )NS ln=   to almost zero by changing the relative 

clumpiness from 8% to 12%. Then, the parameter a  in (39) that controls the size of the 

sigmoid is evidently equal to ( )Nln . 

In order to find the values of the parameters b  and c  we have generated the plots 

of the clumpiness entropy versus the relative clumpiness coefficient for different values 

of N . For the sake of brevity we study only the networks generated by using the ER 

model. We have obtained the sigmoid plots for ER networks having 29, 50, 150, 250, 

500 and 1000 nodes. Then, by fitting we have observed that the parameters b  and c  

scales as power-law of the number of nodes having correlation coefficients larger than 

0.999, 
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b = c1N
γ ≡ 0.044723N0.596142 , 

c = c2Nδ ≡ 18.98589N0.048962 . 

By using these parameters in Eq. (39) we have generated the sigmoid functions for 

3000=N , 2000, 100 and 15, which are plotted in Fig. 8 together with those previously 

obtained by fitting. 

Insert Fig. 8 about here. 

The dramatic decrease of the entropy with the increase of the relative clumpiness 

can be understood by considering the following facts. The largest entropy is obtained 

for a fully disconnected network in which every node has degree equal to zero and then 

( )NS ln= . That is, in the fully-disconnected network every node is indistinguishable 

from each other. When we have a connected network we can group together all nodes 

according to their degrees. In a path, for instance, all nodes except two have degree 2 

which makes then indistinguishable to each other and consequently the entropy is close 

to the maximum. Of course, the number of groups consisting of nodes with the same 

degree increases as the average degree of the network increases. As a consequence the 

number of distinguishable nodes (according to their degrees) also increases, which 

makes that the entropy decreases dramatically. This situation can be observed in Fig. 9, 

where we have plotted the normalized degrees for ER networks having different average 

degrees. In this figure we can observe that the number of groups of nodes with the same 

degree increases dramatically by changing the average degree from 3.98 to 11.71 and it 

is even larger for 85.22=k . 

Insert Fig. 9 about here. 

Because the high plateau of the sigmoid function depends on the logarithm of the 

number of nodes, for small networks the range of entropy values is very much reduced 

in comparison to larger networks. Consequently, there is an “envelope” function that 

determines how the entropy of ER networks decreases with the increase of clumpiness. 
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In fact, this function determines the upper limit for which a network having a given 

clumpiness can increases its entropy. The envelope function is given by first fixing Φ  

and maximizing the entropy with respect to N . We first solve the equation 

0 =
∂

∂N
ln N

1+ exp(c1N
γ Φ + c2Nδ )

,       (40) 

which gives 

1+ exp(−c1N
γ Φ − c2Nδ ) = (c1γ Nγ Φ + c2δ Nδ )N ln N .    (41) 

We find a numerical solution of this equation for each value of Φ. The solution is then a 

function of Φ , which we denote by N(Φ) . We then input this in the first equation and 

have 

( ) ( )
( )( ) ( )δγρ

Φ+ΦΦ+
Φ

=Φ
NcNc

N

21exp1
ln .      (42) 

This means that the entropy of a network generated by the ER model cannot takes 

values over ( )Φρ ; ( ) ( )Φ≤= ρβ 001.0S . 

5.3. Real-world networks 

Here we study 30 real-world networks representing social, informational, 

technological, biological and ecological systems. The social networks include a network 

of the corporate elite in the US [35], inmates in prison, injectable drug users (IDUs), the 

Zachary karate club, college students on a course about leadership, the friendship ties 

among 31 physicians (Galesburg) [363] and a sexual network in Colorado Springs [37]. 

The informational and technological networks include two semantic networks, one 

based on Roget’s Thesaurus of English (Roget) and the other on the Online Dictionary 

of Library and Information Science (ODLIS). They also include three citation networks: 

one consisting of papers published in the Proceedings of Graph Drawing in the period 

1994–2000 (GD), and papers published or citing articles from Scientometrics for the 

period 1978–2000 (SciMet), papers containing the phrase “Small World” [36]. The two 
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technological networks are the airport transportation network in the US in 1997 [36] and 

the Internet at the autonomous systems (AS) level as from April 1997 [38]. The 

biological networks are the protein–protein interaction networks (PINs), for 

Saccharomyces cerevisiae (yeast) [39] and for the bacterium Helicobacter pylori [40]; 

two transcription interaction networks concerning E. coli and yeast [41]; and the neural 

network in C. elegans [12]. The protein residue networks correspond to the proteins 

with Protein Data Bank (PDB) codes: the immunoglobulin 1A4J; the serine protease 

inhibitor 1EAW and the oxidoreductase 1AOR. In these networks each residue is 

represented as a single node, centered on Cβ atoms. Then a contact map is represented 

by taking a 7 Å cutoff radius [42]. Finally, the ecological networks studied correspond 

to the following food webs [43]: Benguela, Bridge Brook, Coachella Valley, El Verde 

rainforest, Little Rock Lake, Scotch Broom, St. Marks Seagrass, and Stony. 

We illustrate in Fig. 10 the plot of the assortativity coefficient versus the relative 

clumpiness coefficient ( )GΦ  expressed in percentage for the studied real-world 

networks. The assortativity coefficient R  is simply the Pearson correlation coefficient 

of the degrees at either ends of a link [22]. The negative values of R  indicate that the 

network is disassortative and the positive values that the network is assortative.  

Insert Fig. 10 about here. 

By simple inspection of Fig. 10 we can observe that the four classes of mixing 

patterns (clumped and loose assortative as well as clumped and loose disassortative) are 

represented in this selection of real-world networks. The most populated class of 

networks corresponds to the loose disassortative ( %7.36 ), which is followed by the 

clumped assortative ( %0.30 ). On the other side, the least populated class is the one of 

clumped assortative networks, which is represented only by three ecological networks. 

In general, there are more loose networks than clumped ones, i.e., 60% versus 40%, 

respectively. 
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The second important observation is that the classification of networks into these 

four classes is not determined by the type of functional systems that they represents, 

e.g., social, biological, ecological, etc. However, it is important to observe that all 

biological networks (100%) are loose as well as most of social networks (71.4%). On 

the other hand, all ecological networks (100%) are clumped. In fact, the only two 

networks which are very clumped ( 66.0>Φ ) are food webs.  

In general, clumped networks display large average degree. The correlation 

coefficient between the average degree and ( )GΦ  for these 30 networks is 0.62. 

However, a large average degree does not guarantee that the network is clumped. As we 

have previously seen, a network with large number of high-degree nodes which are 

separated to each other by relatively large distances, displays loose characteristics 

despite that it has large average degree (see Fig 4c). For instance, the corporate elite 

network displays a large average degree 6.14=k . However, the corporate elite 

network is a loose network having ( ) 1.13=Φ G   because of large distances between the 

top elites. In a similar way the size of the complex network does not explain their 

clumpiness characteristics. We have seen that the only two very clumped networks are 

very small food webs having around 30 nodes. However, the correlation coefficient 

between the size and ( )GΦ  is only 38.0−  for the 30 networks studied. In fact, among 

the networks having less than 500 nodes there are networks with values of ( )GΦ  

ranging from 3 to 80.  

Finally, we analyze the relationship between the relative clumpiness coefficient 

( )GΦ  and the clumpiness entropy ( )GS  for these real-world networks. In Fig. 11 we 

plot both parameters for these real-world networks, where we also plot the envelope 

function obtained previously for random networks. 

Insert Fig. 11 about here. 
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As can be seen in Fig. 11 almost all real-world networks are located below the 

envelope function obtained for random networks. This means that, in general, for every 

real-world network exists an ER random graph having the same relative clumpiness 

coefficient ( )GΦ  but having the maximum possible clumpiness entropy ( )GS . The only 

one exception is the sexual network of Colorado Spring, which has been previously 

identified as possessing other differential characteristics respect to the rest of real-world 

networks [44]. It is also very characteristic of this plot that most of the real-world 

networks are concentrated either close to the bottom line of the plot or to the envelope 

function. This means that there is a gap between the maximum and minimum possible 

entropies. At present we do not have a rational explanation for this observation. 

6. Summary 

 In the present paper, we defined several measures of clumpiness, namely the 

clumpiness coefficient, the spectral measure of clumpiness and statistical mechanical 

quantities of clumpiness. We presented bounds of the clumpiness coefficient. We also 

present physical interpretations of the statistical mechanical quantities of clumpiness. 

We then proposed to categorize complex networks into four classes with the use 

of the clumpiness and the assortativity. We demonstrated the classification, first for 3-

regular graphs with 10 nodes, then for ER and BA random networks, and finally for 

real-world networks. This method successfully classifies 30 real-world networks into 

four classes of clumped assortative, clumped disassortative, loose assortative and loose 

disassorative networks. We also showed that the clumpiness coefficient successfully 

differentiated the ER model from the BA model; they could not be differentiated by the 

assortativity coefficient. We finally showed numerically a relation between the 

clumpiness coefficient and the clumpiness entropy for the ER random networks. The 

relation seems to hold for real-world networks as well. 
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Figure Captions 

Figure 1. Illustrative examples of two real-world networks with assortative mixing, 

where some of the high-degree nodes are clumped (a) or spread across the network (b). 

The assortativity coefficients (r) are displayed. 

 

Figure 2. Illustrative examples of two real-world networks with disassortative mixing, 

where some of the high-degree nodes are clumped (a) or spread across the network (b). 

The assortativity coefficients (r) are displayed. 

 

Figure 3. Plots of the normalized clumpiness coefficient of the 19 cubic regular graphs 

for the different values of α . 

 

Figure 4. Four classes of networks classified by the clumpiness and the assortativity.  

 

Figure 5. a) The graph with the lowest value of the clumpiness coefficient among the 3-

regular graphs having 10 nodes. b) The Petersen graph, which is the graph with the 

largest value of the clumpiness coefficient among the 3-regular graphs having 10 nodes. 

 

Figure 6. A plot of the relative relative clumpiness coefficient Φ  in percentage versus 

the average degree of networks, k  generated at random by using the ER (broken line) 

and BA (solid line) models. The dotted line represents the limit over which a network is 

considered as clumped. 

 

Figure 7. Sigmoidal fits of the clumpiness entropy of random networks as a function of 

the relative clumpiness coefficient. The plot is the average of 100 realizations using the 

ER and BA models. We display the values of the average degree k  for some ER 
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networks in order to illustrate the trend followed in the plot by the change of this 

parameter. 

 

Figure 8. Sigmoidal fits of the entropy of random networks as a function of the relative 

clumpiness coefficient for different network sizes. The network size decreases from left 

to right (N=3000, 2000, 1000, 500, 250, 150, 100, 50, 29, 15). The plots represented as 

solid lines are obtained by fitting both parameters using the data points represented as 

filled circles. The plots represented as dotted lines are those generated by using the Eq. 

(39) of the main text. The discontinuous line represents the envelope function obtained 

numerically (see text for explanations). 

 

Figure 9. Plot of the normalized degrees of the nodes in the ER random networks with 

different average degrees. The nodes are ranked in decreasing order of their relative 

degrees.  

 

Figure 10. Classification of real-world networks with the relative clumpiness 

coefficient and the Newman assortative coefficient. The symbols S, I, T, B and E denote 

social, informational, technological, biological and ecological networks, respectively; 

see the main text for details. The vertical solid and discontinuous lines represent the 

thresholds over which a network can be considered as clumped or very clumped, 

respectively. 

 

Figure 11. Plot of the entropy versus relative clumpiness for real-world networks. The 

discontinuous curve represents the envelope function obtained for the ER networks. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 

 
a) Clumped Assortative 

 

 

b) Clumped Disassortative  

 

 
 

 

c) Loose Assortative 

 

 

 

 

d) Loose Disassortative 
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Figure 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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Figure 10 
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Figure 11 
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