Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Using network centrality measures to manage landscape connectivity

Estrada, E. and Bodin, O. and , Ramon y Cajal program Spain (Funder) and , Swedish Reserach Council for Environment, Agricultural Sciences and , Swedish Research Council (Funder) and , Department for Reserch Cooperation, Swedish International Develo (2008) Using network centrality measures to manage landscape connectivity. Ecological Applications, 18 (7). pp. 1810-1825. ISSN 1051-0761

PDF (Centrality_Landscape_Revised_#2.pdf)

Download (889kB) | Preview


We use a graph-theoretical landscape modeling approach to investigate how to identify central patches in the landscape as well as how these central patches influence (1) organism movement within the local neighborhood, and (2) the dispersal of organisms beyond the local neighborhood. Organism movements were theoretically estimated based on the spatial configuration of the habitat patches in the studied landscape. We find that centrality depends on the way the graph-theoretical model of habitat patches is constructed, although even the simplest network representation, not taking strength and directionality of potential organisms flows into account, still provides a coarse-grained assessment of the most important patches according to their contribution to landscape connectivity. Moreover, we identify (at least) two general classes of centrality. One accounts for the local flow of organisms in the neighborhood of a patch and the other for the ability to maintain connectivity beyond the scale of the local neighborhood. Finally, we study how habitat patches with high scores on different network centrality measures are distributed in a fragmented agricultural landscape in Madagascar. Results show that patches with high degree-, and betweenness centrality are widely spread, while patches with high subgraph- and closeness centrality are clumped together in dense clusters. This finding may enable multi-species analyses of single-species network models.