Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Using network centrality measures to manage landscape connectivity

Estrada, E. and Bodin, O. and , Ramon y Cajal program Spain (Funder) and , Swedish Reserach Council for Environment, Agricultural Sciences and , Swedish Research Council (Funder) and , Department for Reserch Cooperation, Swedish International Develo (2008) Using network centrality measures to manage landscape connectivity. Ecological Applications, 18 (7). pp. 1810-1825. ISSN 1051-0761

[img]
Preview
PDF (Centrality_Landscape_Revised_#2.pdf)
Centrality_Landscape_Revised_#2.pdf

Download (889kB) | Preview

Abstract

We use a graph-theoretical landscape modeling approach to investigate how to identify central patches in the landscape as well as how these central patches influence (1) organism movement within the local neighborhood, and (2) the dispersal of organisms beyond the local neighborhood. Organism movements were theoretically estimated based on the spatial configuration of the habitat patches in the studied landscape. We find that centrality depends on the way the graph-theoretical model of habitat patches is constructed, although even the simplest network representation, not taking strength and directionality of potential organisms flows into account, still provides a coarse-grained assessment of the most important patches according to their contribution to landscape connectivity. Moreover, we identify (at least) two general classes of centrality. One accounts for the local flow of organisms in the neighborhood of a patch and the other for the ability to maintain connectivity beyond the scale of the local neighborhood. Finally, we study how habitat patches with high scores on different network centrality measures are distributed in a fragmented agricultural landscape in Madagascar. Results show that patches with high degree-, and betweenness centrality are widely spread, while patches with high subgraph- and closeness centrality are clumped together in dense clusters. This finding may enable multi-species analyses of single-species network models.