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The concept of information mobility in complex networks is introduced on the basis of a 

stochastic process taking place in the network. The transition matrix for this process 

represents the probability that the information arising at a given node is transferred to a 

target one. We use the fractional powers of this transition matrix to investigate the 

stochastic process at fractional time intervals. The mobility coefficient is then introduced 

on the basis of the trace of these fractional powers of the stochastic matrix. The 

fractional time at which a network diffuses 50% of the information contained in its nodes 

( 50/1 k ) is also introduced. We then show that the scale-free random networks display 

better spread of information than the non scale-free ones. We study 38 real-world 

networks and analyze their performance in spreading information from their nodes. We 

find that some real-world networks perform even better than the scale-free networks with 

the same average degree and we point out some of the structural parameters that make 

this possible.  
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I. INTRODUCTION 

The concept of mobility is widely used in social and economic sciences. Social 

mobility [1], for instance, refers to the degree to which the social status of an individual 

or a social group can change through the course of his/her life. In an economic context 

the mobility refers to the change of the income or wealth in an economy over time [2, 3]. 

Then, the concept of mobility reflects some dynamical aspects of the evolution of 

complex systems like a society or an economy. To understand the importance of this 

concept in the general context of complex networks, consider three institutions in an 

economy with incomes 10$ , 20$  and 30$ , respectively. At the next time step, their 

incomes may change to 30$ , 20$  and 10$ , respectively. The distribution of the income 

at the initial stage is exactly the same as the one at the final. However, the status of the 

nodes 1 and 3 has changed due to the mobility of some capital from one institution to 

another. Thus, the internal mobility can make the difference between two societies or 

economies more than the income distribution does [4]. In a recent work Ding et al. [5] 

have investigated the economic mobility in four money transfer models used in research 

on the wealth distribution. An important conclusion of their work is that even though 

different models have the same type of distribution, their mobilities may be quite 

different.  

Mobility indices are generally based on the transition matrix of a Markov chain 

[6]. In such matrices the probability of movements between classes are given by the off-

diagonal entries of the matrix [7]. The larger the elements on the main diagonal the 

higher the propensity of staying in the same state in the next period of time. Then, if one 

of the non-diagonal entries increases at the expense of the diagonal component, the new 

structure is considered to have more mobility than the previous one [7]. The aim of 
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mobility indices is to quantify the magnitude of the off-diagonal entries of the transition 

matrix against the magnitude of the diagonal ones in a consistent manner [7, 8]. These 

indices are real-valued scalars taking values between zero and one [7, 8]. An interesting 

assumption which is imposed on mobility indices is that the identity matrix is associated 

with the minimum value of the index, representing the maximal immobility of the 

system [7]. In a seminal paper Shorrocks introduced a mobility index based on the trace 

of the transition matrix, which has been widely used in the economic and social science 

literature [7]. However, there are several other indices proposed in the literature which 

have also been applied to study social and economic mobility [6].   

Here we are interested in extending the concept of mobility to a wider context. 

Instead of analyzing the mobility of social status of individuals in a society or the 

mobility of the income or wealth in an economy, we are interested in the mobility of 

information in a complex network. Our principal aim is to introduce a model that permits 

us to understand how the topological organization of a complex system influences the 

mobility of information among the agents forming the system. We propose here a 

stochastic model for studying the mobility of information in a complex network and 

analyze its principal characteristics. We introduce an analogue of the Shorrocks index of 

mobility [7] in this context and we show that some of the axioms previously imposed on 

mobility models arise naturally in this context. For instance, the association of the 

identity matrix with the minimum value of the index is a natural consequence of the 

model proposed here. We analyze mobility of information in random networks as well as 

in a variety of real-world ones. The information mobility in a complex network appears 

to be related to the average degree, degree-distribution and homogeneity of the network. 

II. ON ROOTS OF STOCHASTIC MATRICES 
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The determination of stochastic roots of stochastic matrices has found many applications 

in different areas of applied mathematics [9-12]. For instance, in economical applications 

credit ratings for a company are represented by a stochastic matrix recording the 

probability that the company changes from a credit rating to another [10, 11]. These 

transition matrices are recorded for a given time interval, which usually is one year. In 

some cases, however, it is necessary to make predictions for periods shorter than a year, 

usually a month. To obtain such monthly transition matrices it is necessary to find the 

stochastic roots of the annual transition matrix. Other examples have been described for 

hourly transition matrices describing weather conditions in an airport [12]. In this case it 

is necessary to obtain information about shorter periods of time like a quarter hour basis, 

which conduces to finding stochastic roots of such weather transition matrix. Finally, 

another area of application arises in the study of transition matrices describing chronic 

diseases evolution [13]. In this case the transition matrix describes the progression in 

patients of a disease through different severity states. Here again it is necessary to study 

stochastic roots of the transition matrix in order to obtain information at shorter time 

intervals. 

In all these examples the transition matrices of Markov processes are obtained for 

certain time intervals, which we call here unit time, e.g., one year, one hour, etc. Then, 

the problem arises for finding the stochastic matrices representing the states of the 

system at certain fractions of this unit time. If the unit time stochastic matrix is M , the 

fractional time stochastic matrices are given by  p/1MX . Unfortunately, it is known 

that this is an ill-posed problem because i) the p th root of the matrix M  may not exist, 

ii) if it exists, this root may possibly be non-stochastic or iii) such p th root may be not 

unique. Only recently it has been analyzed in the mathematical literature under what 

conditions does a given stochastic matrix have a stochastic p th root [14]. There are, 
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however, many open questions in this field and many facts have been identified. The 

following ones are of particular relevance here [14]: 

1) A nonnegative p th root of a stochastic matrix is not necessarily stochastic. 

2) A stochastic matrix may have a stochastic p th root for some, but not all p . 

It has been widely known that there may not be a uniform and effective approach to 

solve the matrix root problem and that it is possible that we have to deal with the 

stochastic root problem on a case-by-case basis [12]. 

A way of testing whether the p th roots of the transition matrix M  are stochastic is 

by considering its logarithm of MQ ln . If the entries of the matrix Q  fulfill the 

following conditions 

a) 0ijq  for ji , 

b) 0iiq  , 

c) 0
1

r

j

ijq  for ,,,1 ri   

then, the p th roots of the transition matrix M  are stochastic [15]. However, if these 

conditions are not fulfilled we can still have the case 2) above. In such cases the current 

available approach is to compute some p th root and perturbs it to be stochastic [10, 13, 

16]. 

III.  DEFINING THE TRANSITION MATRIX 

We consider here that information can flow from any node to another in the same 

connected component of the network. This information can also travel back and forth 

through the links of the network. Then, the information arising at a node p  can arrive at 

a node q  by using any of the walks connecting both nodes in the network. Let us 

consider that the “loss” of the information is proportional to the length of the walk. Then, 
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the amount of information arising at the node p  that arrives at the node q  at the time 

step k  is given by pq

k

k

k

pq cI A , where the k th power of the adjacency matrix gives 

the number of walks of length k  in which the information can travel between the 

corresponding nodes. The coefficient kc  gives the loss of information during the walk 

[17]. The total amount of information flowing from p  to q  is given by 

1k

pq

k

kpq cI A ,         (1) 

and the total amount of information emanating from p  is given by  

n

q

pqp II
1

.  

Hereafter, the coefficients kc  are taken to be the inverse factorial of k . It can be easily 

shown that 

pq

k

pq

k

pq e
k

I A
A

0 !
,        (2) 

where Ae  is the exponential adjacency matrix, which is defined as [18] 

0 !k

k

k
e

AA .          (3) 

The diagonal entries of Ae  correspond to the subgraph centrality of the nodes in 

the network [19] and the non-diagonal ones to the communicability function between the 

corresponding pair of nodes [20]. Both measures have found applications in diverse 

areas of the study of complex networks [21-28] and the mathematical study of the so-

called Estrada index of a graph, Aetr , has received much attention in the literature [29-

33]. By using the spectral formula for the communicability between a pair of nodes in 

the network we can see that pqI  is the thermal Green’s function of the network for 

1 , where  is the inverse temperature: 
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jj

n

j

jpqpq qpGI exp
1

.      (4) 

Here we introduce the probability that the information arising at the node p  

travels to the node q  as  

p

pq

qp
I

I
P .  

We remark that q  is not necessarily different from p . We can represent these 

transition probabilities in the form of a matrix P :  

nnnn

n

n

PPP

PPP

PPP









21

22212

12111

P .       (5) 

The probability qpP  is not necessarily equal to pqP  and then P  is in general 

not symmetric. It is straightforward to realize that the sum of any row of P  is equal to 

one, 1
1

n

q

qpP , i.e., P is a row-stochastic matrix. By definition a transition matrix is a 

stochastic matrix where the entry qpP  is the transition probability of going from the 

state p to the state q . 

IV. QUANTIFYING THE INFORMATION MOBILITY 

We have previously interpreted the communicability function pqI  as the thermal 

Green’s function of the network [20]. Consequently, it represents how much the q th 

node oscillates when we “shake” the p th node. In other words, how a perturbation or 

impact propagates from one place to another in the network. Then, if we apply such 

perturbation to the p th node it will be transmitted to all other nodes in the network, not 

only to the q th one. Thus, qpP  tells us the probability that the node q  receives such 
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perturbation among all the nodes in the network. The matrix P is the transition matrix for 

this process in full analogy to the annual or hourly transition matrices obtained in finance 

or medical applications. However, contrary to the annual or hourly transition matrices in 

which the unit time is very well defined in physical terms, e.g., a year, a moth, etc., here 

the situation is very different. We can consider that the matrix P is a unit-time transition 

matrix only in the mathematical sense, i.e., it is the transition matrix raised to one. 

However, we cannot assign a physical time to this “unit-time” as it could be different for 

different networks. This situation is managed at the end of this section. Before it we need 

to understand the nature of the stochastic process we are investigating. 

In order to investigate the nature of this stochastic process we need first to 

investigate what happens at the infinite limit k

k

/1lim PT . It is easy to prove that [10], 

IP k

k

/1lim ,  

where I  is the identity matrix. To find such relation we only need to express the k th 

root in the following way: kk e
P

P

ln

/1 . Note that the identity PP ln/1ln /1 kk  exists for 

a matrix with no eigenvalues on and for 1,1/1 k  [18]. Then, 

IP 0

P

ee k

k

k

k

ln

/1 limlim ,        (6) 

where 0  is an all-zeroes matrix. This condition has been introduced axiomatically in 

models of mobility in social and economic contexts [7, 8].  

The transition matrix IT0  tells us that at the very first stage of this process all 

the information arising at a particular node stays there. That is, there is no information 

diffusing from one node to another in the network. As the process advances in time the 

probabilities that information spread from one node to another is different from zero for 

any pair of nodes in the same connected component. Consequently, the Markov chain is 
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simulating the process in which information, concentrated at the nodes in the initial 

stage, diffuses from one node to another at an infinite time. 

The amount of information which is transferred from the nodes at a given time step 

can be easily computed by considering the trace of the corresponding transition matrix. 

At the very first step ntr k

k

/1lim P , where n  is the number of nodes in the network. 

Consequently, an appropriate measure for mobility in the network at the time step 

represented by k/1P  can be given by, 

1

/1

n

trn
M

k

k

P
.         (7) 

The mobility coefficient kM  is bounded as 10 kM , where the lower bound is 

reached when k

k

/1lim P , and the upper bound is reached for the stationary state. The 

lower bound is proved by the fact that ntr k

k

/1lim P . The upper bound is characterized 

by the stationary state, which is given by k

k
PȆ lim . The transition matrix of the 

stationary state is given by [34] 

n

n

n









21

21

21

Ȇ          

where 
n

21ʌ  is the stationary distribution. The vector ʌ  has norm one,  

1
1

n

i i , which makes the mobility coefficient equal to one. 

This index is analogous to the Shorrocks mobility index [6], with the difference 

being basically in the form of the transition matrices introduced here. If the roots of the 

transition matrix are stochastic, we do not need to calculate the k th root of P  in order to 

obtain the mobility indices. In such case the calculation is straightforward by using the 
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eigenvalues of the matrix P . Let 1j  be an eigenvalue of the stochastic matrix P . 

Then,  

1

1

/1

n

n

M

n

j

k

j

k .         (8) 

However, we have already mentioned the fact that the transition matrices defined 

here for complex networks have in general non-stochastic roots. Then, we need to 

compute the perturbed roots using the Charitos et al.’s [13] regularization approach to 

obtain the mobility indices. We will see later in this work that this is not necessary for 

the transition matrices defined here and we can still take advantage of the calculation 

based on the use of the eigenvalues of the matrix P . 

Now, we can take advance of this definition to explain the concept of physical 

time in the current context. Because we cannot assign a physical value for the unit time 

due to its dependence on the network studied we propose to use the concept of mobility 

half time. The information mobility half time is the time at which 50% of the information 

contained originally in the nodes of the networks is moved through the links. We know 

that at time zero the information is concentrated at the nodes and during the process such 

information is spread through the links of the network. Then, the information mobility 

half time defines a time measure which is unambiguously determined for any network. A 

way to measure this index is introduced in the next section. 

In order to determine the information mobility half time we need to analyze the 

transition matrices at fractional time intervals. The transition matrices for the Markov 

chain at these fractional time intervals are then given by the k th root of the stochastic 

matrix P ,  

k

k

/1

/1 PT .          (9) 
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We recall here that the k th root of the matrix P  can be expressed by the following 

integral [18], 

0

1/1 /sin
dtt

kk kk PIPP .       (10) 

For such Markovian stochastic process, the k th root of the stochastic matrix P  should 

exist and needs to be stochastic. This question is analyzed in the Appendix of this work. 

In summary, the stochastic process described by the different fractional powers of 

the transition matrix T , i.e., by the k th roots of P , is an information diffusion process. 

At the initial state the information is concentrated on the nodes and all the information 

arising from a node returns to it. As the time progresses some amount of information is 

allowed to flow from one node to another until a stationary state is reached at infinite 

time.  

V. COMPUTATIONAL RESULTS 

A. Influence of regularization on mobility indices 

We start by considering a simple example which is illustrated in Fig. 1A. The 

logarithm of the transition matrix P  for this graph has some negative out-diagonal 

entries, which indicates that some of its roots are not stochastic. We calculated 19 

fractional powers of the transition matrix for this graph using the regularization method 

according to the algorithm of Charitos et al. [13]. In Fig. 1B we plot these matrices and 

fit the data points by using the weighted least square method [35] implemented in the 

STATISTICA package [36]. It can be clearly seen that the information diffuses from the 

main diagonal of the plots, in which it is concentrated at the starting of the process, to the 

regions outside the main diagonal. When the stationary state is reached the transition 

matrix has the form of the matrix Ȇ , which when represented as in Fig. 1B has a shape 

characterized by multiple horizontal stripes; see the plot for 100/1 k . 

Insert Fig. 1 about here. 
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Then, we calculated the same fractional powers without regularization by using the 

real Schur form [37], i.e., not necessarily stochastic roots. Using both approaches we 

calculate the mobility coefficient as defined by the expression (19). The mobility indices 

calculated by both approaches are quite close to each other, differing in less than 0.08% 

on average. We plotted the values of kM  versus k/1 , observing that the mobility 

coefficient increases as a power law of the form 

kcb

a
Mk

/1
,         (11) 

where 1121.0  with the regularization approach and 1111.0  without it. The 

correlation coefficient for the fitting is 0.9999 in both cases.  

We further observe the universal character of this relation for random and real-

world networks. Due to the practical importance of this result we investigate further the 

calculation of the mobility coefficient using both approaches for four real-world 

networks. The networks will be described below but for the time being we say that they 

have 34, 67, 710 and 1586 nodes. Their names are Zackary, Prison, PIN H. pylori and 

corporate (see below for description). In all cases the mobility indices obtained by the 

two methods were very close to each other, not differing in more than 1.3%. The 

mobility of the four networks obeys the relation (11) and the values of  using the 

values of the mobility calculated by the two methods do not differ in more than 0.03 

units. In Fig. 2 we plot the results obtained here for these networks with and without 

regularization.  

The important conclusion of this experiment is that we do not need to use the 

regularization algorithm for calculating the mobility coefficient. Instead we can take 

advantage of the use of the expression (10) and obtaining the values of  kM  simply by 

computing the powers of the eigenvalues of the transition matrix. 
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Insert Fig. 2 about here. 

B. Information mobility half-time 

An important consequence of the existence of the relationship (11) is that we can 

obtain the value of the information mobility half-time, 50/1 k  for which 5.0kM . This 

is the time (in terms of k/1 ) after which there will be more information transferred from 

the nodes than retained on them. We recall that at the beginning of the stochastic process 

all information is concentrated on the nodes with no mobility from one node to another. 

The value of 50/1 k  is then given by 

d

cb
a

k

ln
5.0

ln

exp/1 50 .       (12) 

The value of 50/1 k  for the artificial network illustrated in Fig. 1 is 0.288. This means 

that this network transfers 50% of the information through the nodes after approximately 

3/1  of the time since the beginning of the stochastic process. In general, the smaller the 

value of 50/1 k  the shorter the time used by the network to transfer 50% of the 

information through the nodes.  

C. Information mobility in random networks 

Now we investigate the information mobility in random models of complex 

networks. In particular we investigate how the information mobility changes with the 

changes in the average degrees in Erdös–Rényi (ER) [38] and Barabási–Albert (BA) [39] 

models of networks. In both models, each random network starts with g nodes and new 

nodes are added consecutively in such a way that a new node is connected to exactly g 

nodes chosen randomly from the already existing nodes. The average degree  is then 

exactly equal to 2g. The new edges are attached according to a specific probability 

distribution, namely, the Poisson distribution for the ER model and the preferential 
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attachment mechanism for the BA model. We study random networks grown by these 

two mechanisms up to n = 1000 nodes, changing systematically the value of  from 4 

to 16. For every value of , we generated 1000 random networks. In Fig. 3 we 

illustrate a summary of the results obtained for the mobility indices calculated by using 

the expression (10).  

Insert Fig. 3 about here. 

The first interesting result which is observed in Fig. 3 is that all ER and BA 

networks obey the power-law dependence (11) between the mobility and k/1  (see 

internal panels of Fig. 3). The second one is that 50/1 k  decreases as a power-law with the 

increase of the average degree of the networks, ~/1 50k . The best fitted models are 

1418.1

50 66137.0/1 ERk  and 
0702.1

50 40297.0/1 BAk . As can be seen in the 

main panel of Fig. 3 the decrease is fastest for the BA networks than for ER ones. For 

instance, for 16  the BA networks transfer 50% of the information at about 60/1  of 

the time after the initial step of the stochastic process. On the other hand, for similar ER 

network this percentage of transfer takes place at about 33/1  of the time after the initial 

step. The main conclusion here is that scale-free networks have better information 

mobility than random networks with a Poisson degree distribution. However, in the limit 

of very high average degree both kinds of networks tend to have the same information 

mobility (see the trend of the fitted curves in Fig. 3). 

D. Information mobility in real-world networks 

We study here 38 real-world complex networks accounting for ecological, 

biological, informational, technological and social systems. Description of all datasets 

and the appropriate references are given in Table 1. 

Insert Table 1 about here. 
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We start by generating the P  matrices for all these networks. We then calculated 

the values of the mobility coefficient using the expression (10) and plot them versus k/1  

in Fig. 4. As can be seen in this figure the mobility of all networks grows as a power-law 

function of k/1 . In all cases the power-law function is given by the expression (11) with 

coefficients ranging from 08.1  to 52.1 . 

Insert Fig. 4 about here. 

The values of the power-law coefficients and those of 50/1 k  reflect the large 

differences existing in the mobility of information for the networks studied (see Fig. 5). 

The network with the smallest 50/1 k  is the Online Dictionary of Library and Information 

Science (ODLIS) in which 50% of the information is spread at 1/60 of the initial time of 

the stochastic process. A significant difference is observed for the networks with the 

largest values of 50/1 k , in which 50% of information is spread only after 1/3 of the 

initial time. In Fig. 5 we have included the plots of 50/1 k  versus  for ER and BA 

generated in the previous section. In general, most networks have information mobility 

which are better than ER random networks with the same average degree. For instance, 

only 12 out of 38 networks spread information at longer times than if they were random. 

On the other side of the coin, there are 12 out of 38 networks which spread information 

better than scale-free networks with the same average degree.  

Insert Fig. 5 about here. 

As can be seen in Fig. 5, the mobility of 50% of information increases with the 

average degree of the corresponding network. However, as can be inferred from the 

dispersion of the points in the plot of 50/1 k  versus  in real-world networks (Fig. 5) 

the information mobility depends on some other factors apart from the average degree. 

Then, a natural way of analyzing the performance of information mobility for a network 

is to compare its 50/1 k  value with that of a random network generated by the BA or ER 
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approach with the same average degree. A simple measure of this performance is given 

by the percentage of improvement in information mobility respect to the BA network, 

BAkRWkP 5050 /100% ,       (13) 

where RW stands for real-world networks. In Table 2 we give the values of the 

parameters calculated here for the 38 complex networks studied. 

Insert Table 2 about here. 

Let us consider the Online Dictionary of Library and Information Science (ODLIS) 

as an example. This network performs the spread of information %180P  better than 

the corresponding BA network. The Internet at the autonomous systems (AS) level as 

from April 1998 performs the spread of information %490P  better than the 

corresponding BA network. In general, the determination of what mechanism works 

behind this great performance of complex networks is still a puzzle. For instance, we 

know that these two networks are scale-free and display good expansion properties 

(super-homegeneity) [74-76], which can contribute to their higher performance but the 

airport transportation network in the US in 1997 does not have a power-law degree 

distribution and performs %148P  with respect to the BA model. The complexity of 

the performance of information mobility can be observed in the fact that the neural 

network of C. elegans, which also has exponential degree distribution and the average 

degree of 14 has only %80P  with respect to BA model. In summary, the mobility of 

50% of information in a complex network appears to be related to several topological 

factors, such as the average degree, the degree distribution and the homogeneity of the 

network.  

VI. SUMMARY 

We have extended the concept of mobility in a society or economy to the general 

case of information mobility in a complex network. The concept is based on a stochastic 
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process taking place in the network in which information spread from the nodes. At the 

initial step all the information arising at a giving node stays there after certain number of 

steps. As the time progresses the information spreads from one node to another until a 

stationary state is reached at an infinite time. The transition matrix at unit time 

characterizing this process gives the probability that the information arising at a given 

node ends up at a target one. Then, the mobility of this information is introduced on the 

basis of the trace of the transition matrices at fractional time intervals. We have shown 

that the regularization method developed by Charitos et al. [13] is a suitable method of 

transforming the non-stochastic roots of the transition matrix into stochastic ones.  

An interesting characteristic of complex networks is the fractional time at which 

they diffuse 50% of the information contained in its nodes ( 50/1 k ). The values of 50/1 k  

increases with the average degree in random networks with a Poisson or a power-law 

degree distribution. Scale-free networks display better spread of information than the 

random networks with a Poisson degree distribution. The mobility coefficient displays a 

universal power-law relationship with the fractional time for all random and real-world 

networks.  

We have analyzed all the new concepts by studying 38 real-world networks. We 

find that some real-world networks perform information spreading even better than 

scale-free networks with the same average degree. The network versions of the Internet 

at the AS level analyzed here display the best performance in information spreading 

among all the networks studied. 
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APPENDIX. 

ON FRACTIONAL POWERS OF THE TRANSITION MATRIX P 

There are two important questions in relation to the roots of the stochastic matrix 

P. The first is about the existence of such roots and the second is about their 

stochasticity. To answer the first, let us define a diagonal matrix 
1A1S ediag T , 

where 1  is a 1n  all-ones vector. Then, the row-stochastic matrix of P can be written as 

ASP e . Now, the question about the existence of the transition matrix of the Markov 

chain is transformed into the question about the existence of the k th root of ASP e . It 

is easy to show that the transition matrix ASP e  has no eigenvalues on and 

consequently it has a principal k th root k/1PX  for any k . However, the existence of 

the principal k th root does not guaranty that such roots are stochastic. Thus, we need to 

analyze the second question posted below. 

The analysis of the stochasticity of the roots of the transition matrix is a well 

known ill-posed problem [16]. Unfortunately, when dealing with real-world complex 

networks none of the previous analytical results [14] for the stochasticity of the transition 

matrices are fulfilled. Consequently we have to deal with the stochasticity of the roots of 

the transition matrix of general complex networks in a case-by-case basis. 

We have analyzed several complex networks on this case-by-case basis and we 

have observed that PQ ln  generally does not fulfill the requirement a) previously 

reported for the entries of Q . It can be easily shown that in general these conditions are 

not fulfilled even for simple graphs, in particular the condition 0ijq  for ji . The 

following shows one example gently provided by N. Higham and L. Lin: 
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215.0210.0183.0210.0183.0

150.0237.0216.0180.0216.0

123.0203.0245.0203.0225.0

150.0180.0216.0237.0216.0

123.0203.0225.0203.0245.0

P  

440.2175.1045.0175.1045.0

844.0892.2037.1037.1

031.0973.0954.2973.0977.0

8435.0037.1892.2037.1

0301.0973.0977.0973.0954.2

ln

0.025

0.025

P  

 

The first root of the transition matrix of this graph which is not stochastic is the 61th. 

This indicates that the process can be considered as a Markov chain for all fractional 

time between 1/60 and the unit time. As we have stated before the non-stochastic root 

matrices can be slightly perturbed to stochastic ones. Here we apply Charitos et al.’s [13] 

algorithm of regularization for transforming the roots of the matrix P into stochastic ones 

by using perturbations. The algorithm is described below. 

Let k/1PX . The algorithm proposed by Charitos et al. [13] searches a 

transition matrix *X  from the set of all nn transition matrices that, when raised to 

the power k , most closely matches the transition matrix P. That is, 

XAX ˆminarg*

A
, 

where  is a suitable norm in the space of nn  matrices and X̂  is the matrix resulting 

from removing the imaginary part of all the entries of X . The algorithm calculates *X  

on a row-by-row basis for each row of X̂  by searching a vector 

iip
Sim

l
m
ii

ˆ,minarg* , 
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where pl  is a vector norm measuring the distance between two points in the n-

dimensional space and m

iSim  is an n-dimensional simplex. The algorithm to obtain *  as 

taken from Charitos et al. [13] is, 

1. If 0ˆ
ij , nj ,,1 , then STOP; ii â

*
. Otherwise 

2. Compute the quantity 
0ˆ:

ˆ
ijaj ija  and the number of positive entries 

0ˆ# ijajm . 

3a. If 0ˆ
ija , then set 0ˆ

ija , nj ,,1 . 

3b. If 0ˆ
ija , then set maa ijij /ˆˆ , nj ,,1 . 

4. Go to step 1. 

We use here a Matlab code gently provided by T. Charitos to make the calculation 

of the stochastic roots of the transition matrix P. Note that the code by Charitos et al. 

[13] provides the consolidated algorithm as proposed in the paper that combines the 

previous 4-step procedure for the pL -norm with two subalgorithms that use the relative 

entropy measure for each row to produce the optimal short interval transition matrix. In 

addition, the code includes the 'entry fix' as proposed by Charitos et al. [13] for avoiding 

cases where a short interval transition matrix has a zero in an entry where the 

corresponding entry in the original transition matrix is positive. For instance, in the 

example given below we calculate the 61th root of the transition matrix P,  

9610.00184.00010.00184.00010.0

0132.09541.00163.00163.0

0007.00153.09531.00153.00155.0

0132.00163.09541.00163.0

0007.00153.00155.00153.09531.0

61/1

6

6

106.44

106.44

P  

which has two negative entries. This calculation was carried out using the Matlab code 

ROOTPM_REAL for calculating roots of real matrices via real Schur form [37]. The 
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code can be obtained at The Matrix Function Toolbox 

(www.maths.manchester.ac.uk/~higham/mftoolbox). However, when we applied the 

algorithm of Charitos et al. [13] we obtain the following stochastic matrix, which is very 

close to the previous one: 

9610.00184.00010.00184.00010.0

0132.09513.00163.00029.00163.0

0007.00153.09531.00153.00155.0

0132.00029.00163.09513.00163.0

0007.00153.00155.00153.09531.0

61/1P  

When we analyze the roots of the transition matrix P, we are only considering 

some time intervals of the stochastic process. For instance, if we consider 2/1P  we obtain 

the transition matrix for a period of time which is only one half of the unit time. Then, in 

order to investigate what happens at time steps closer to the unit time we need to know 

1kT  (considering that kTP ). One strategy that we consider here is to find the t th root 

of P  and then rising t/1P  to the power 1tp : tkktkttt //1/1 TTTP .  Then, 

for sufficiently large values of t  we have 

1//1 limlim ktkk

k
t

tt

t
TTTP . 

http://www.maths.manchester.ac.uk/~higham/mftoolbox
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Table 1. Brief description of the real-world complex networks studied. 

Name Nodes Links Description Ref. 

Roget 994 3640 Vocabulary network of words related by their 

definitions in Roget’s Thesaurus of English. Two 

words are connected if one is used in the definition 

of the other. 

40 

ODLIS 2898 16376 Vocabulary network of words related by their 

definitions in the Online Dictionary of Library and 

Information Science. Two words are connected if 

one is used in the definition of the other. 

41 

Geom 3621 9461 Collaboration network of scientists in the field of 

computational geometry. 

42 

Corporate 1586 11540 Network of the American corporate elite formed 

by the directors of the 625 largest corporations 

that reported the compositions of their boards 

selected from the Fortune 1000 in 1999. 

43 

Prison 67 142 Social network of inmates in prison who chose 

“What fellows on the tier are you closest friends 

with?” 

44 

Zachary 34 78 Social network of friendship between members of 

the Zachary karate club. 

45 

College 32 96 Social network among college students in a course 

about leadership. The students choose which three 

members they wanted to have in a committee. 

46 

Galesburg  31 67 Friendship ties among 31 physicians. 47 

High Tech  33 91 Friendship ties among the employees in a small hi-

tech computer firm which sells, installs, and 

maintains computer systems. 

47 

SawMill 36 62 Communication network within a small enterprise. 47 

ColoSpring 324 347 Risk network of persons with HIV infection 48 
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during its early epidemic phase in Colorado 

Springs, USA (sexual and injecting drugs 

partners) from 1985-1999. 

Heterosexual 82 83 Heterosexual contacts which were extracted at the 

Cadham Provincial Laboratory and is a 6-month 

block data between November 1997 and May 

1998. 

49 

Homosexual 250 266 Contact tracing study, from 1985 to 1999, for HIV 

tests in Colorado Springs, USA, where most of the 

registered contacts were homosexual. 

49 

GD 249 635 Citation network of papers published in the 

Proceedings of Graph Drawing during the period 

1994-2000. 

50 

Centrality 118 613 Citation network of papers published in the field 

of network centrality. 

51,52 

Small World 233 994 Citation network of papers that cite S. Milgram's 

1967 Psychology Today paper or use Small World 

in the title. 

53 

USAir97 332 2126 Airport transportation network between airports in 

US in 1997. 

54 

Int_1997 

Int_1998 

3015 

3522 

5156 

6324 

The internet at the autonomous system (AS) level 

as of September 1997 and of April 1998 taken 

from the COSIN database. 

55,56 

Electronic1 

Electronic2 

Electronic3 

122 

252 

512 

189 

399 

819 

Electronic sequential logic circuits parsed from the 

ISCAS89 benchmark set, where nodes represent 

logic gates and flip-flops. 

57 

PIN1 

PIN2 

PIN3 

2224 

710 

84 

6608 

1396 

98 

Protein-protein interaction networks in S. 

cereviciae, H. pylori, B. subtilis, A. fulgidus, P. 

falciparum and H. sapiens.  

57-63 
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PIN4 

PIN5 

PIN6 

32 

229 

2783 

36 

604 

6007 

Trans-Ecoli 328 456 Direct transcriptional regulation between operons 

in Escherichia coli. 

57,64 

Trans-yeast 662 1062 Direct transcriptional regulation between genes in 

Saccaromyces cerevisae. 

57,65 

Neurons 280 1973 Neuronal synaptic network of the nematode C. 

elegans, which includes all data except muscle 

cells and using all synaptic connections. 

57,66 

Grassland 75 113 All vascular plants and all insects and trophic 

interactions found inside stems of plants collected 

from 24 sites distributed within England and 

Wales. 

67 

Scotch Broom 154 366 Trophic interactions between the herbivores, 

parasitoids, predators and pathogens associated 

with broom, Cytisus scoparius, collected in 

Silwood Park, Berkshire, England, UK. 

68 

Canton Creek 108 707 Primarily invertebrates and algae in a tributary, 

surrounded by pasture, of the Taieri River in the 

South Island of New Zealand. 

69 

Chesapeake 

Bay 

33 71 The pelagic portion of an eastern U.S. estuary, 

with an emphasis on larger fishes. 

70 

Coachella 

Valley 

30 241 Wide range of highly aggregated taxa from the 

Coachella Valley desert in southern California. 

71 

Benguela 29 191 Marine ecosystem of Benguela off the southwest 

coast of South Africa. 

72 

Reef Small 50 503 Caribbean coral reef ecosystem from the Puerto 

Rico-Virgin Island shelf complex. 

73 
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Table 2. The densities ( NE / ), the power-law coefficients ( ), the half-times ( 50/1 k ) 

and the performance ( %P ) (see text for definitions) for the 38 real-world complex 

networks studied here. The networks are ranked in decreasing order of their 

performances. 

 

Network NE /   50/1 k  %P  

Internet1998 3.5911 -1.4536 0.0209 490.19 

Internet1997 3.4202 -1.4329 0.0230 469.26 

Geom 5.2256 -1.3814 0.0282 243.17 

Odlis 11.3016 -1.5164 0.0167 179.76 

PIN Ecoli 3.9324 -1.2801 0.0525 177.20 

PIN Human 2.1585 1.2953 0.0516 163.32 

USAir97 12.8072 -1.4991 0.0177 148.33 

PIN yeast 5.9424 -1.3292 0.0425 140.94 

ScotchBroom 4.7532 -1.2947 0.0544 139.78 

Trans Ecoli 2.7805 -1.1787 0.1076 125.35 

SmallW 8.5322 -1.3707 0.0328 123.90 

Trans yeast 3.2085 -1.1958 0.0982 117.80 

Centrality 10.3898 -1.3561 0.0359 91.61 

PIN Malaria 5.2751 -1.2379 0.0774 87.78 

PIN B subtilis 2.3333 -1.1024 0.2009 81.01 

Neurons 14.0929 -1.3797 0.0297 80.08 

Roget 7.3239 -1.2582 0.0633 75.61 

Corporate 14.5523 -1.3670 0.0305 75.18 

Hereosexual 2.0244 -1.0780 0.2532 74.81 

ColoSpg 2.1420 -1.0779 0.2412 73.92 

Grassland 3.0133 -1.1229 0.1678 73.74 

Canton 13.0926 -1.3603 0.0349 73.68 

GD 5.1004 -1.1855 0.0957 73.66 

Homosexual 2.1280 -1.0760 0.2466 72.81 

Zackary 4.5882 -1.1963 0.1097 71.91 

HighTech 5.5152 -1.2074 0.0962 67.37 
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PIN A fulgidus 2.2500 -1.0777 0.2601 65.06 

Chesapeake 4.3030 -1.1503 0.1389 60.85 

SawMill 3.4444 -1.1102 0.1782 60.20 

Galesburg 4.3226 -1.1452 0.1408 59.75 

ReefSmall 20.1200 -1.3999 0.0279 58.14 

Benguela 13.1724 -1.3364 0.0442 57.71 

Prison 4.2388 -1.1293 0.1490 57.64 

Coachella 16.0667 -1.3637 0.0364 56.66 

Electronic3 3.1992 -1.0876 0.2110 55.01 

Electronic2 3.1667 -1.0853 0.2169 54.11 

Electronic1 3.0984 -1.0822 0.2259 53.19 

Social3 6.0000 -1.1653 0.1249 47.41 
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Figure captions 

Fig. 1. (color online) An artificial network (A) used to illustrate the process of 

information mobility (B) for different values of fractional times 1/1 k . The transition 

matrix for the value 100/1 k  is also illustrated as a representation of the stationary 

state. 

Fig. 2. (color online) Illustration of the results obtained by calculating the fractional 

powers of the transition matrix with and without regularization for the artificial network 

illustrated in Fig. 1 and for four real-world networks. 

Fig. 3. (color online) (Inner panels) Illustration of the power-law dependence between 

the information mobility and the fractional time for random networks with Poisson and 

scale-free degree distributions. It is seen that as the time progresses the mobility grows 

until reaching a saturation at values about 1/1 k . (Main panel) Relation between the 

information mobility half-time and the average degree for the random networks 

generated by ER and BA models. It is observed that as the average degree increases the 

mobility half-time goes to zero following a power-law decay. For small average degree it 

is seen that scale-free networks (BA) display larger mobility half-time than ER networks. 

Fig. 4. (color online) Illustration of the power-law dependence of the information 

mobility on the fractional time for 38 real-world networks. It is seen that as the time 

progresses from zero to one the information mobility grows following a power-law. At 

infinite times a value of 1M  is obtained. 

Fig. 5. Illustration of the relation between the half-time parameter and the average degree 

for 38 real-world networks. The plots obtained for the random networks are given for 

analyzing the performance of the real-world networks respect to the random ones.
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Fig. 2 
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Fig. 5 

 

 




