Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Information mobility in complex networks

Estrada, Ernesto (2009) Information mobility in complex networks. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 80 (2). pp. 1-38. ISSN 1063-651X

[img]
Preview
Text (strathprints014254)
strathprints014254.pdf - Accepted Author Manuscript

Download (566kB) | Preview

Abstract

The concept of information mobility in complex networks is introduced on the basis of a stochastic process taking place in the network. The transition matrix for this process represents the probability that the information arising at a given node is transferred to a target one. We use the fractional powers of this transition matrix to investigate the stochastic process at fractional time intervals. The mobility coefficient is then introduced on the basis of the trace of these fractional powers of the stochastic matrix. The fractional time at which a network diffuses 50% of the information contained in its nodes (1/ k50 ) is also introduced. We then show that the scale-free random networks display better spread of information than the non scale-free ones. We study 38 real-world networks and analyze their performance in spreading information from their nodes. We find that some real-world networks perform even better than the scale-free networks with the same average degree and we point out some of the structural parameters that make this possible.