Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

A new methodology for modelling erosion–corrosion regimes on real surfaces : Gliding down the galvanic series for a range of metal-corrosion systems

Stack, M.M. and Abdelrahman, M. and Jana, B. (2010) A new methodology for modelling erosion–corrosion regimes on real surfaces : Gliding down the galvanic series for a range of metal-corrosion systems. Wear, 268 (3-4). pp. 533-542. ISSN 0043-1648

[img]
Preview
PDF (strathprints014251.pdf)
strathprints014251.pdf - Preprint

Download (635kB) | Preview

Abstract

Erosion-corrosion of materials in aqueous environments is a complex phenomenon involving a very large number of variables. In such cases, characteristics of the target, particle and the environment affect the degradation mechanism. Predicting material behaviour may sometimes be a "black art" due to the parameter size which is involved in such processes. In studies of erosion-corrosion, there have been significant advances in the modelling of such processes in recent years. Various methodologies employed include quasi-static modelling, using CFD modelling and erosion-corrosion mapping. In such cases, the output of the various models can differ significantly. In this work, a methodology combining CFD modelling and erosion-corrosion mapping has been developed to model erosion-corrosion behaviour of pure metals, which variously passivate and dissolve under a range of simulated conditions. This provides a means of mapping the component undergoing erosion-corrosion and thus is a step change on previous modelling work in this area as it enables superimposition of the erosion-corrosion map on real surfaces. The relative advantages and limitations of this approach are discussed in this paper.