Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

On the effect of the atmosphere on the evaporation of sessile droplets of water

Sefiane, K. and Wilson, S.K. and David, S. and Dunn, G. and Duffy, B.R. (2009) On the effect of the atmosphere on the evaporation of sessile droplets of water. Physics of Fluids, 21 (6). ISSN 1070-6631

[img]
Preview
PDF (Sefiane-etal-POF-2009-On-the-effect-of-the-atmosphere-on-the-evaporation-of-sessile)
Sefiane_etal_POF_2009_On_the_effect_of_the_atmosphere_on_the_evaporation_of_sessile.pdf - Accepted Author Manuscript

Download (408kB) | Preview

Abstract

An experimental and theoretical study into the effect of the atmosphere on the evaporation of pinned sessile droplets of water is described. The experimental work investigated the evaporation rates of sessile droplets in atmospheres of three different ambient gases (namely, helium, nitrogen and carbon dioxide) at reduced pressure (from 40 to 1000 mbar) using four different substrates(namely, aluminium, titanium, Macor and PTFE) with a wide range of thermal conductivities.Reducing the atmospheric pressure increases the diffusion coefficient of water vapour in the atmosphere and hence increases the evaporation rate. Changing the ambient gas also alters the diffusion coefficient and hence also affects the evaporation rate. A mathematical model that takes into account the effect of the atmospheric pressure and the nature of the ambient gas on the diffusion of water vapour in the atmosphere and the thermal conductivity of the substrate is developed, and its predictions are found to be in encouraging agreement with the experimental results.