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Abstract

A mathematical model for the quasi-steady evaporation of a thin liquid droplet on a thin sub-

strate that incorporates the dependence of the saturation concentration of vapour at the free surface

of the droplet on temperature is used to examine an atypical situation in which the substrate has

a high thermal resistance relative to the droplet (i.e. it is highly insulating and/or is thick relative

to the droplet). In this situation diffusion of heat through the substrate is the rate-limiting evap-

orative process and at leading order the local mass flux is spatially uniform, the total evaporation

rate is proportional to the surface area of the droplet, and the droplet is uniformly cooled. In

particular, the qualitative differences between the predictions of the present model in this situation

and those of the widely used “basic” model in which the saturation concentration is independent

of temperature are highlighted.
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I. INTRODUCTION

The evaporation of a liquid droplet on a substrate is a fundamental fluid mechanics

problem arising in a wide variety of physical contexts ranging from the domestic to the in-

dustrial and the geophysical. In recent years new developments in a number of technological

applications involving droplet evaporation, notably cooling, desalination, DNA mapping and

gene-expression analysis, coating and patterning, have helped to inspire renewed interest in

this fascinating problem.

In many physical contexts diffusion of liquid vapour in the atmosphere above the droplet

is the rate-limiting evaporative process, and there is now a considerable body of literature

concerned with both experimental investigations and theoretical analysis of this situation, in-

cluding the work of Picknett and Bexon1, Bourgès-Monnier and Shanahan2, Deegan et al.3,4,

Hu and Larson5–8, Poulard et al.9,10, Popov11, Sultan et al.12, Grandas et al.13, Shahidzadeh-

Bonn et al.14, Guéna et al.15–18, Xu and Luo19, and Ristenpart et al.20. Much of the previous

theoretical work has focused on this situation, using what we refer to as the “basic” model

in which the saturation concentration of vapour at the free surface of the droplet is inde-

pendent of temperature. Recently David et al.21 and Dunn et al.22,23 conducted a series of

physical experiments using a variety of liquids on a variety of substrates and showed that

the thermal conductivity of the substrate has a strong influence on the total evaporation

rate; moreover, Dunn et al.22,23 showed that this behaviour can be captured by an improved

mathematical model that incorporates the dependence of the saturation concentration of

vapour on temperature.

In the present paper we use this improved model to examine an atypical situation in which

the substrate has a high thermal resistance relative to the droplet (i.e. it is highly insulating

and/or is thick relative to the droplet) so that diffusion of heat through the substrate (rather

than diffusion of vapour in the atmosphere) is the rate-limiting evaporative process. In

particular, we highlight the qualitative differences between the predictions of the improved

model in this situation and those of the basic model.
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II. THE MATHEMATICAL MODEL

Adopting the mathematical model proposed by Dunn et al.22,23 (who also verified the

model by comparison with the experimental results of David et al.21) we consider the quasi-

steady evaporation of a thin pinned axisymmetric sessile droplet with constant radius R

of liquid with constant density ρ, surface tension σ, specific heat capacity cp and thermal

conductivity k on a thin horizontal substrate of constant thickness hs with constant density

ρs, specific heat capacity cs
p and thermal conductivity ks. The atmosphere surrounding the

droplet and the substrate is assumed to be at constant atmospheric temperature Ta and

pressure pa. Referred to cylindrical polar coordinates (r, φ, z) with origin on the substrate

at the centre of the droplet and with the z axis perpendicular to the substrate, the shape

of the free surface of the droplet at time t is denoted by z = h(r, t), the upper surface of

the substrate by z = 0, and the lower surface of the substrate by z = −hs, as shown in Fig.

1. The volume of the droplet is denoted by V = V (t), the contact angle at the contact line

r = R by θ = θ(t), and the initial value of the contact angle at t = 0 by θ0 = θ(0).

Both the droplet and the substrate are assumed to be thin relative to the radius of

the droplet, i.e. θ0 ≪ 1 and hs/R ≪ 1, but no assumption is made about their relative

thicknesses, i.e. no assumption is made about the size of hs/θ0R. Since both the droplet and

the substrate are thin, their temperatures, denoted by T = T (r, z, t) and T s = T s(r, z, t),

satisfy ∂2T/∂z2 = 0 and ∂2T s/∂z2 = 0, and the local evaporative mass flux from the droplet,

denoted by J = J(r, t) (≥ 0), satisfies the local energy balance LJ = −k∂T/∂z on z = h

for r < R, where L is the latent heat of vaporisation. Hence, assuming that both the

temperature and the heat flux are continuous between the droplet and the wetted part of

the substrate, and that the lower surface of the substrate is at the atmospheric temperature

Ta, we have simple explicit solutions for the temperature of the droplet and the substrate

(in terms of the as yet unknown mass flux J), namely

T = Ta − LJ

(

z

k
+

hs

ks

)

, T s = Ta −
LJ

ks
(z + hs). (1)

Assuming that the transport of vapour in the atmosphere is dominated by diffusion (see,

for example, Popov11), the concentration of vapour in the atmosphere above the droplet

and the substrate, denoted by c = c(r, z, t), satisfies Laplace’s equation, ∇2c = 0. Since the

droplet is thin we may impose the boundary conditions on the free surface of the droplet on

z = 0 (rather than on z = h) and solve Laplace’s equation in the half-space z > 0.

3



At the free surface of the droplet we assume that the atmosphere is saturated with vapour

so that c = csat(T ) on z = 0 for r < R, where the saturation concentration csat = csat(T ) is

assumed to be a linearly increasing function of temperature given by

csat(T ) = csat(Ta) + c′sat(Ta)(T − Ta), (2)

in which the dash denotes differentiation with respect to argument (i.e. c′sat(Ta) = dcsat/dT

evaluated at T = Ta). On the dry part of the substrate there is no mass flux, i.e. ∂c/∂z = 0

on z = 0 for r > R, and far from the droplet the concentration of vapour approaches its

ambient value, i.e. c → Hcsat(Ta) as
√

r2 + z2 → ∞, where H (0 ≤ H ≤ 1) is the relative

saturation of the atmosphere far from the droplet. Once c is known the mass flux from the

droplet is given by J = −D∂c/∂z on z = 0 for r < R, where D is the coefficient of diffusion

of vapour in the atmosphere, and hence using (1) and (2) we find that c satisfies

c = csat(Ta) + LDc′sat(Ta)

(

h

k
+

hs

ks

)

∂c

∂z
on z = 0 for r < R. (3)

A standard result from the theory of gases (see, for example, Reid et al.24) is that D is

inversely proportional to pa, i.e. D = Dref pref/pa, where Dref and pref are reference values of

D and pa, respectively. Note that pa enters the model only via this expression for D.

To simplify the subsequent presentation we non-dimensionalise and scale r with R, z in

the droplet with θ0R, z in the substrate with hs, z in the atmosphere above the droplet and

the substrate with R, h with θ0R, V with θ0R
3, θ with θ0, T and T s with Ta, c−Hcsat(Ta) with

(1 − H)csat(Ta), J with D(1 − H)csat(Ta)/R and t with ρθ0R
2/D(1 − H)csat(Ta). Hereafter

all quantities will be non-dimensionalised and scaled appropriately unless stated otherwise.

Assuming that the droplet is sufficiently small that surface-tension effects dominate grav-

itational effects then it has the simple quasi-static parabolic shape h = θ(1 − r2)/2 with

volume V = πθ/4, where θ(0) = 1 and V (0) = π/4. The total evaporation rate is given by

−dV

dt
= 2π

∫ 1

0

J r dr, (4)

where J is given by

J = −∂c

∂z
on z = 0 for r < 1. (5)

The concentration of vapour in the atmosphere c satisfies ∇2c = 0 in z > 0 subject to the

mixed boundary conditions

c = 1 + ∆C(h + S)
∂c

∂z
on z = 0 for r < 1, (6)
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∂c

∂z
= 0 on z = 0 for r > 1, (7)

and c → 0 as
√

r2 + z2 → ∞, where

∆C =
θ0LDc′sat(Ta)

k
and S =

khs

θ0Rks
(8)

are non-dimensional measures of the variation of saturation concentration with temperature

and of the relative thermal resistance of the droplet and the substrate, respectively. The

boundary condition (6), the non-dimensional version of (3), which incorporates the variation

of the saturation concentration with temperature given in (2) and hence couples the problem

for the concentration of vapour to that for the temperature, is a key difference between the

present model and the basic model used by several previous authors. Once c and hence J

are known, the temperature of the droplet and the substrate are given by (1) to be

T = 1 − EJ(z + S), T s = 1 − EJS(z + 1), (9)

where

E =
θ0LD(1 − H)csat(Ta)

kTa

(10)

is a non-dimensional measure of the evaporative cooling. In particular, (9) describes the

evaporative cooling of the droplet and the substrate below the droplet.

Before investigating the behaviour of the model in the situation in which the substrate

has a high thermal resistance relative to the droplet (corresponding to the limit S → ∞) in

Sec. III, in the following two subsections we briefly examine the behaviour of the model when

S = O(1) in the two extreme cases in which the saturation concentration is independent of

temperature (i.e. ∆C = 0) and in which the saturation concentration is strongly dependent

on temperature (i.e. ∆C → ∞).

A. The Special Case ∆C = 0

In the special case in which the saturation concentration is independent of temperature,

corresponding to ∆C = 0, the present model reduces to a trivial generalisation (namely,

to the case in which D is a known function of pa) of the basic model. Specifically, the

boundary condition (6) reduces to simply c = 1 on z = 0 for r < 1, so that the problem for

the concentration of vapour is decoupled from that for the temperature. The solution for
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c = O(1) is well known and can be expressed in several equivalent forms including

c =
2

π

∫

∞

0

J0(ξr) sin(ξR)e−ξz

ξ
dξ, (11)

where Jn(·) denotes a Bessel function of the first kind of order n, and hence from (5)

J =
2

π
√

1 − r2
. (12)

From (4)

−dV

dt
= 4, (13)

and hence V = π/4 − 4t and θ = 1 − 16t/π, and, in particular, the droplet completely

disappears at t = π/16. From (9)

T = 1 − 2E(z + S)

π
√

1 − r2
, T s = 1 − 2ES(z + 1)

π
√

1 − r2
. (14)

In particular, the local mass flux and the temperatures in both the droplet and the substrate

are all integrably singular at the edge of the droplet.

B. The Limit ∆C → ∞

In the opposite extreme in which the saturation concentration is strongly dependent on

temperature, corresponding to the limit ∆C → ∞, the boundary condition (6) becomes

∂c/∂z = −2/((1− r2 +2S)∆C)+O(1/∆C2) on z = 0 for r < 1. Although the leading order

solution for c = O(1/∆C) cannot readily be expressed in closed form, we can immediately

deduce that

J =
2

(1 − r2 + 2S)∆C
+ O

(

1

∆C2

)

. (15)

From (4)

−dV

dt
=

2π

∆C
log

(

1 + 2S

2S

)

+ O

(

1

∆C2

)

, (16)

showing that the first order total evaporation rate is a monotonically decreasing function of

S, and hence

V =
π

4
− 2π

∆C
log

(

1 + 2S

2S

)

t + O

(

1

∆C2

)

(17)

and

θ = 1 − 8

∆C
log

(

1 + 2S

2S

)

t + O

(

1

∆C2

)

. (18)
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From (9)

T = 1 − 2E(z + S)

(1 − r2 + 2S)∆C
+ O

(

1

∆C2

)

, (19)

T s = 1 − 2ES(z + 1)

(1 − r2 + 2S)∆C
+ O

(

1

∆C2

)

. (20)

In particular, it is interesting to note from (19) that the temperature of the free surface of

the droplet is given by T = 1−E/∆C + O(1/∆C2) which is, rather unexpectedly, spatially

uniform and constant in time up to O(1/∆C2).

III. THE LIMIT S → ∞

In general, the model described in Section II has to be solved numerically, as Dunn et

al.22,23 did. However, in the situation in which the substrate has a high thermal resistance

relative to the droplet (i.e. it is highly insulating and/or is thick relative to the droplet),

corresponding to the limit S → ∞, we can obtain the asymptotic solution to the problem

by seeking an expansion for c in the form

c = c0 +
c1

∆CS
+

c2

∆C2S2
+ O

(

1

S3

)

, (21)

where the factors of ∆C = O(1) have been included to simplify the subsequent presentation,

with corresponding expansions for all the other dependent variables.

A. Zeroth Order

At zeroth order in 1/S we find immediately that c0 = 0, J0 = 0 and dV0/dt = 0, and hence

V0 = π/4 and θ0 = 1, showing that according to the present model there is, as expected, no

evaporation from a droplet on a perfectly thermally resisting substrate.

B. First Order

At first order in 1/S we find immediately that J1 = 1 and

−dV1

dt
= 2π

∫ 1

0

J1 r dr = π, (22)

and hence V1 = −πt and θ1 = −4t, and from (9)

T0 = 1 − E

∆C
, T s

0 = 1 − E(z + 1)

∆C
. (23)
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In other words, the first order mass flux is spatially uniform and constant in time and gives

rise to linear decreases in both the volume and the contact angle in time at first order.

Moreover, the leading order temperature in both the droplet and the substrate are constant

in time, but whereas the temperature in the droplet is spatially uniform (i.e. the droplet is

uniformly cooled), that in the substrate below the droplet decreases linearly with z from the

atmospheric value of unity at z = −1 to the droplet value of 1 − E/∆C at z = 0.

The first order concentration, c1 = c1(r, z), satisfies ∇2c1 = 0 subject to

∂c1

∂z
=







−1 on z = 0 for r < 1,

0 on z = 0 for r > 1,
(24)

and c1 → 0 as
√

r2 + z2 → ∞. Fortunately, this problem for c1 can be solved explicitly (see,

for example, Ockendon et al.25) to yield

c1(r, z) =

∫

∞

0

J0(ξr)J1(ξ)e
−ξz

ξ
dξ, (25)

where again Jn(·) denotes a Bessel function of the first kind of order n. Figure 2 shows

contours of c1 in the atmosphere above the droplet and the substrate, and, in particular,

illustrates that c1 ∼ 1/2
√

r2 + z2 as
√

r2 + z2 → ∞. Evaluating c1 on r = 0 yields c1(0, z) =
√

1 + z2 − z, while evaluating c1 on z = 0 yields

c1(r, 0) =
2

π
×











E(r) for r < 1,

rE
(

1

r

)

− (r2 − 1)

r
K

(

1

r

)

for r > 1,
(26)

where K(·) and E(·) are complete elliptic integrals of the first and second kind, respectively,

defined by

K(r) =

∫ 1

0

dξ
√

1 − ξ2r2
√

1 − ξ2
, E(r) =

∫ 1

0

√

1 − ξ2r2

√

1 − ξ2
dξ. (27)

In particular, we find that c1(r, 0) = 1 − r2/4 + O(r4) as r → 0+,

c1(r, 0) =
2

π
+

r − 1

π

[

1 + log
|r − 1|

8

]

+ O
(

(r − 1)2 log |r − 1|
)

as r → 1, (28)

showing that c1(r, 0) is continuous with a logarithmic singularity in slope at the edge of the

droplet, and

c1(r, 0) =
1

2r
+

1

16r3
+ O

(

1

r5

)

as r → ∞. (29)

Figure 3 shows a plot of c1(r, 0) as a function of r.
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C. Second Order

At second order in 1/S we find that

J2 = −
(

2E(r)

π
+

(1 − r2)∆C

2

)

(< 0) (30)

and

−dV2

dt
= 2π

∫ 1

0

J2 r dr = −
(

8

3
+

π∆C

4

)

(< 0), (31)

and hence

V2 =

(

8

3
+

π∆C

4

)

t (32)

and

θ2 =

(

32

3π
+ ∆C

)

t. (33)

In particular, from (30) we find that

J2 = −
(

2 + ∆C

2

)

+

(

1 + 2∆C

4

)

r2 + O
(

r4
)

as r → 0+, (34)

and

J2 = −2

π
+

1 − r

π

[

log
1 − r

8
+ 1 − π∆C

]

+ O
(

(1 − r)2 log(1 − r)
)

as r → 1−, (35)

showing that J2 remains finite but has a logarithmic singularity in slope at the edge of the

droplet. Figure 4 shows a plot of J2 as a function of r for a range of values of ∆C. From (9)

T1 = −E

[

z −
(

2E(r)

π∆C
+

1 − r2

2

)]

, (36)

T s
1 = E(z + 1)

(

2E(r)

π∆C
+

1 − r2

2

)

. (37)

In other words, the second order mass flux is negative and spatially non-uniform but constant

in time and gives rise to linear increases in both the volume and the contact angle in time

at second order.

The second order concentration, c2 = c2(r, z), satisfies ∇2c2 = 0 subject to

∂c2

∂z
=







2E(r)

π
+

(1 − r2)∆C

2
on z = 0 for r < 1,

0 on z = 0 for r > 1,
(38)

and c2 → 0 as
√

r2 + z2 → ∞. This problem for c2 cannot readily be solved in closed form,

but fortunately, as we have already seen, we do not need to determine c2 in order to obtain

J and dV/dt to O(1/S2) and T and T s to O(1/S).
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D. Range of Validity of the Asymptotic Solution

In order to determine the range of validity of the present asymptotic solution Figure

5 shows a plot of −dV/dt as a function of S for a range of values of ∆C comparing the

present asymptotic solution and the exact numerical solutions calculated using a finite-

element method implemented using the MATLAB-based numerical analysis package COM-

SOL Multiphysics (formerly FEMLAB) as described by Dunn et al.22,23. In particular,

Figure 5 confirms that the present asymptotic solution is indeed in good agreement with

the exact solution provided that S is sufficiently large, and that, as expected, what precisely

“sufficiently large” means depends on the value of ∆C.

IV. DISCUSSION

While the present non-dimensional presentation is mathematically very convenient it

obscures the way the variables depend on the original physical quantities, and so it is en-

lightening to write the asymptotic solution described in Section III in dimensional terms as

follows:

c = Hcsat(Ta) +
ksR(1 − H)csat(Ta)

LhsDc′sat(Ta)

∫

∞

0

J0(ξr)J1(ξR)e−ξz

ξ
dξ + O

(

θ0Rks

khs

)2

, (39)

J =
ks(1 − H)csat(Ta)

Lhsc′sat(Ta)

[

1 −
{

2kE(r/R)

πθ0LDc′sat(Ta)
+

R2 − r2

2R2

}

θ0Rks

khs

]

+ O

(

θ0Rks

khs

)3

, (40)

T = Ta−
(1 − H)csat(Ta)

c′sat(Ta)

[

1 +

(

z

θ0R
−

{

2kE(r/R)

πθ0LDc′sat(Ta)
+

R2 − r2

2R2

})

θ0Rks

khs

]

+O

(

θ0Rks

khs

)2

,

(41)

T s = Ta−
(1 − H)csat(Ta)

c′sat(Ta)

( z

hs
+ 1

)

[

1 −
{

2kE(r/R)

πθ0LDc′sat(Ta)
+

R2 − r2

2R2

}

θ0Rks

khs

]

+O

(

θ0Rks

khs

)2

,

(42)

V =
πθ0R

3

4
− πksR2(1 − H)csat(Ta)

ρLhsc′sat(Ta)

[

1 −
{

8k

3πθ0LDc′sat(Ta)
+

1

4

}

θ0Rks

khs

]

t + O

(

θ0Rks

khs

)3

,

(43)

and

θ = θ0 −
4ks(1 − H)csat(Ta)

ρLhsRc′sat(Ta)

[

1 −
{

8k

3πθ0LDc′sat(Ta)
+

1

4

}

θ0Rks

khs

]

t + O

(

θ0Rks

khs

)3

. (44)

As several previous authors have described, the widely used basic model (i.e. the special

case ∆C = 0) in which diffusion of vapour in the atmosphere is the rate-limiting evaporative
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process predicts that the local mass flux (12) is integrably singular at the contact line r = R,

and, from (13), gives rise to the well-known prediction for the total dimensional evaporation

rate

−dV

dt
=

4RD(1 − H)csat(Ta)

ρ
, (45)

which is proportional to R (i.e. proportional to the circumference of the droplet). The

present analysis reveals that the corresponding predictions in two rather different situations

in which diffusion of heat through the substrate (rather than diffusion of vapour in the

atmosphere) is the rate-limiting evaporative process are qualitatively different from that of

the basic model. At leading order in the limit of strongly temperature-dependent saturation

concentration (i.e. in the the limit ∆C → ∞ with S = O(1)) the local mass flux (15) is

finite everywhere across the surface of the droplet and, from (16), gives rise to the total

dimensional evaporation rate

−dV

dt
∼ 2πkR(1 − H)csat(Ta)

ρLθ0c′sat(Ta)
log

(

θ0Rks + 2khs

2khs

)

, (46)

which has a more complicated “R log R” dependence on R. At leading order in the limit of

a substrate with a high thermal resistance relative to the droplet (i.e. in the limit S → ∞
with ∆C = O(1)) the present asymptotic solution shows that the local mass flux (40) is

spatially uniform, giving rise to the total dimensional evaporation rate

−dV

dt
∼ πksR2(1 − H)csat(Ta)

ρLhsc′sat(Ta)
, (47)

which is proportional to R2 (i.e. proportional to the surface area of the droplet). In par-

ticular, the prediction of the basic model for dV /dt is independent of L, k, ks and hs (i.e.

independent of the thermal properties of both the droplet and the substrate and of the thick-

ness of the substrate), whereas the leading order predictions for dV /dt in both the limit of

strongly temperature-dependent saturation concentration and the limit of a substrate with

a high thermal resistance are independent of D.

As with any mathematical model, there are a number of conditions restricting the validity

of the present analysis. For the mathematical model of Dunn et al.22,23 used in the present

work to hold we require that fluid inertia is negligible, i.e.

θ2
0

ρUR

µ
≪ 1, (48)
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that thermal advection is negligible, i.e.

θ2
0

ρcpUR

k
≪ 1, (49)

where U is a characteristic radial velocity, that the temperature in the droplet is quasi-steady,

i.e.
ρcp(θ0R)2

kT ≪ 1, (50)

that the temperature in the substrate is quasi-steady, i.e.

ρscs
ph

s2

ksT ≪ 1, (51)

that the diffusion in the atmosphere is quasi-steady, i.e.

R2

DT ≪ 1, (52)

where T is the characteristic lifetime of the droplet, that gravity effects are negligible in the

droplet, i.e.
ρgR2

σ
≪ 1, (53)

and that the thermal conductivities of both the fluid and the substrate are greater than that

of the surrounding air, denoted by kair, i.e.

k, ks ≫ kair. (54)

In addition, for the simplified version of the model used in the present work to hold we

require that both the droplet and the substrate are thin (i.e. that the thicknesses of both

the droplet and the substrate are small relative to the radius of the droplet), i.e.

θ0 ≪ 1 and
hs

R
≪ 1. (55)

Finally, for the large-S asymptotic analysis described in Sec. III to hold we require that

S =
khs

θ0Rks
≫ 1 with ∆C =

θ0LDc′sat(Ta)

k
= O(1). (56)

In practice, in typical experimental situations not all of these conditions will, in general,

be satisfied. However, it is possible to imagine atypical (but still physically realisable)

situations in which all of the conditions are reasonably well satisfied. For example, consider

a thin droplet of water with radius R = 5 × 10−4 m and contact angle θ0 = 0.1 on a thin
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substrate of a poor conductor such as polypropylene of thickness hs = 10−4 m evaporating

into an atmosphere of air with H = 0.4 at Ta = 295 K and reduced pressure pa = 9.98

kPa. Using typical parameter values taken from Dunn et al.22,23 and the references therein,

namely ρ = 998 kg m−3, L = 2.45×106 m2 s−2, µ = 9.62×10−4 kg m−1 s−1, cp = 4.18×103

m2 s−2 K−1, k = 0.604 kg m s−3 K−1, σ = 7.25×10−2 kg s−2, csat(Ta) = 1.94×10−2 kg m−3,

c′sat(Ta) = 1.11×10−3 kg m−3 K−1, D = 2.44×10−4 m2 s−1, together with typical parameter

values for polypropylene, namely ρs = 910 kg m−3, cs
p = 1.9× 103 m2 s−2 K−1, ks = 0.12 kg

m s−3 K−1, the characteristic lifetime of the droplet in the large-S asymptotic limit is

T =
ρθ0R

2

D(1 − H)csat(Ta)
× S∆C =

ρLhsc′sat(Ta)θ0R

ks(1 − H)csat(Ta)
≃ 10 s, (57)

and hence a characteristic radial velocity is U = R/T ≃ 5 × 10−5 m s−1. Using these

parameter values the left hand sides of the conditions (48) – (53) are small, specifically

3 × 10−4, 2 × 10−3, 2 × 10−3, 0.01, 1 × 10−4 and 0.03, respectively. Furthermore, condition

(54) holds because the conductivities of both the droplet and the substrate are significantly

greater than that of air (typically 0.02 kg m s−3 K−1). In addition, condition (55) holds

because both θ0 = 0.1 and hs/R = 0.2 are small, while (56) yields S ≃ 10 and ∆C ≃ 0.1,

which Figure 5 indicates is just in the asymptotic regime. Clearly it is also possible to

imagine other situations with somewhat larger values of S, but the foregoing suggests that

the present asymptotic analysis is relevant to a physically realistic situation that could be

realised in the laboratory using the approach and techniques used by, for example, David et

al.21.
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FIG. 1: Geometry of the problem.
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FIG. 2: Plot of the contours of c1(r, z) in the atmosphere above the droplet and the substrate.
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FIG. 5: Plot of −dV/dt as a function of S for ∆C = 0.1, 1 and 10 comparing the present asymptotic

solution and the exact numerical solutions.
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