Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Evaporation of a thin droplet on a thin substrate with a high thermal resistance

Dunn, Gavin and Wilson, S.K. and Duffy, B.R. and Sefiane, K. (2009) Evaporation of a thin droplet on a thin substrate with a high thermal resistance. Physics of Fluids, 21. ISSN 1070-6631

PDF (Dunn-etal-POF-2009-Evaporation-of-a-thin-droplet-on-a-thin)
Dunn_etal_POF_2009_Evaporation_of_a_thin_droplet_on_a_thin.pdf - Accepted Author Manuscript

Download (212kB) | Preview


A mathematical model for the quasi-steady evaporation of a thin liquid droplet on a thin substrate that incorporates the dependence of the saturation concentration of vapour at the free surface of the droplet on temperature is used to examine an atypical situation in which the substrate has a high thermal resistance relative to the droplet (i.e. it is highly insulating and/or is thick relative to the droplet). In this situation diffusion of heat through the substrate is the rate-limiting evaporative process and at leading order the local mass flux is spatially uniform, the total evaporation rate is proportional to the surface area of the droplet, and the droplet is uniformly cooled. In particular, the qualitative differences between the predictions of the present model in this situation and those of the widely used 'basic' model in which the saturation concentration is independent of temperature are highlighted.