Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Generalized stochastic delay Lotka-Volterra systems

Mao, X. and Yin, J. and Wu, F. (2009) Generalized stochastic delay Lotka-Volterra systems. Stochastic Models, 25 (3). pp. 436-454. ISSN 1532-6349

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This article deals with a class of generalized stochastic delay Lotka-Volterra systems of the form dX(t) = diag(X1(t), X2(t),..., Xn(t))[(f(X(t)) + g(X(t - τ)))dt + h(X(t))dB(t)]. Under some unrestrictive conditions on f, g, and h, we show that the unique solution of such a stochastic system is positive and does not explode in a finite time with probability one. We also establish some asymptotic boundedness results of the solution including the time average of its (β + )-order moment, as well as its asymptotic pathwise estimation. As a by-product, a stochastic ultimate boundedness of the solution for this stochastic system is directly derived. Three examples are given to illustrate our conclusions.