Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Generalized stochastic delay Lotka-Volterra systems

Mao, X. and Yin, J. and Wu, F. (2009) Generalized stochastic delay Lotka-Volterra systems. Stochastic Models, 25 (3). pp. 436-454. ISSN 1532-6349

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This article deals with a class of generalized stochastic delay Lotka-Volterra systems of the form dX(t) = diag(X1(t), X2(t),..., Xn(t))[(f(X(t)) + g(X(t - τ)))dt + h(X(t))dB(t)]. Under some unrestrictive conditions on f, g, and h, we show that the unique solution of such a stochastic system is positive and does not explode in a finite time with probability one. We also establish some asymptotic boundedness results of the solution including the time average of its (β + )-order moment, as well as its asymptotic pathwise estimation. As a by-product, a stochastic ultimate boundedness of the solution for this stochastic system is directly derived. Three examples are given to illustrate our conclusions.