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Stability of Hybrid Stochastic Retarded Systems
Lirong Huang, Student Member, IEEE, Xuerong Mao, and Feiqi Deng

Abstract—In the past few years, hybrid stochastic retarded sys-
tems (also known as stochastic retarded systems with Markovian
switching), including hybrid stochastic delay systems, have been
intensively studied. Among the key results, Mao et al. proposed
the Razumikhin-type theorem on exponential stability of stochastic
functional differential equations with Markovian switching and its
application to hybrid stochastic delay interval systems. However,
the importance of general asymptotic stability has not been consid-
ered. This paper is to study Razumikhin-type theorems on general

-th moment asymptotic stability of hybrid stochastic retarded sys-
tems. The proposed theorems apply to complex systems including
some cases when the existing results cannot be used.

Index Terms—Asymptotic stability, Markov chain, Razumikhin-
type theorems, retarded systems, stochastic systems.

I. INTRODUCTION

H
YBRID systems are employed to model many practical

systems where abrupt changes in system structure and

parameters may occur (see, e.g., [4] and [8]). An area of partic-

ular interest has been the analysis of stability of hybrid systems

(see, e.g., [1], [10], [18], and [19]). Recently, hybrid stochastic

retarded systems (HSRSs), including hybrid stochastic delay

systems (HSDSs), driven by continuous-time Markovian chains

have been widely used since stochastic modeling plays an im-

portant role in many branches of science and engineering. Con-

sequently, the stability analysis of HSRSs and HSDSs has been

studied by many works, see, e.g., [12]–[16], [22]. Mao et al. [13]

established a number of exponential stability criteria for sto-

chastic differential delay equations with Markovian switching

that apply for systems with constant delay and obtained expo-

nential and asymptotic stability criteria for stochastic differen-

tial delay equations with Markovian switching [14], which are

useful for systems with sufficient small constant delay. Mao [15]

studied the exponential stability of linear stochastic delay in-

terval systems with Markovian switching while Yue et al. [22]

considered that of a class of stochastic systems with time delay,

nonlinearity, and Markovian switching. These delay-dependent

results use linear matrix inequality (LMI) techniques with Lya-

punov functionals and require the time delay to be a constant

or a differentiable function that varies slowly, or say, the deriva-

tive of which is bounded by a constant number less than one. To

remove the restriction in [15] and allow the time delay to be a
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bounded variable only, Mao et al. [12], [16] proposed and em-

ployed the Razumikhin-type theorem on exponential stability.

The Razumikhin method is developed to cope with the

difficulty arisen from the large, quickly varying, and nondif-

ferentiable time delays. However, the importance of general

asymptotic stability has not been considered. In many cases,

the exponential stability of the equilibrium of the system is

not necessary and to stabilize the system exponentially fast is

economically, and sometimes practically, unfeasible. In fact,

the criteria for exponential stability of HSRSs implicitly require

the diffusion operator associated with the underlying HSRSs

of the Lyapunov function along a solution of the system to be

negative and have the same order as that of the function itself

at some instants, which is not satisfied for many nonlinear

systems. In these cases, the existing results (see [12]–[16], and

[22]) cannot be applied. For example, consider the following

scalar stochastic delay system is driven by a right-continuous

Markov chain that is independent of the one-dimensional

(1-D) standard Brownian motion and takes values in

with generator

This HSDS is described as the following stochastic delay equa-

tion with Markovian switching:

(1)

on , where are Borel measurable and the

nonlinear term and the diffusion term

are given as follows:

for all . We encounter a problem when we attempt to

apply the existing results to analyze the stability of the solution

to (1). To see this problem, let us set

and calculate

(2)

on , where operator is defined in (4) or (25) (see, e.g.,

[12]). The higher order (higher than the order of ) of poly-

nomial , time delay, and
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(cf. Theorem 4.2, [12]) all appear on the right-hand side of in-

equality (2) and this prevents the exiting results from being used.

However, the solution to (1) may be asymptotically stable in

mean-square sense though, due to , it might be not

exponentially stable (see [9] and [20]). This paper is to study the

general asymptotic stability of HSRSs with Razumikhin-type

arguments, which is a generalization of the result on exponen-

tial stability obtained in [12].

NOTATION

Throughout the paper, unless otherwise specified, we will

employ the following notation. Let be a

complete probability space with a filtration satisfying

the usual conditions (i.e., it is right continuous and con-

tains all -null sets). Let be

an -dimensional Brownian motion defined on the probability

space. If are real numbers, then denotes the max-

imum of and , and stands for the minimum of and

. Let denote the Euclidean norm in . Let and

denote the family of all continuous -valued

functions on with the norm

. Let be the family of all

-measurable bounded -valued random vari-

ables . For and ,

denote by the family of all -measurable

-valued random processes

such that .

Let be a right-continuous Markov chain on

the probability space taking values in a finite state space

with generator given by

if ,

if ,

where and is the transition rate from to if

while

Assume that the Markov chain is independent of the

Brownian motion . It is known that almost all sample paths

of are right-continuous step functions with a finite number

of simple jumps in any finite subinterval of .

Let us consider an -dimensional HSRS

(3)

on with initial data

. Moreover

are measurable functions with and

for all . Thus, (3) admits a trivial solution .

Here, is regarded as a

-valued stochastic process. We assume that and

are sufficiently smooth so that (3) only has continuous solu-

tions on , any version of which is denoted by or

in this paper. For example, and satisfy the local Lip-

schitz condition and the linear growth condition, see [12]–[16]

and references therein.

Let denote the family of all nonneg-

ative functions on that are twice con-

tinuously differentiable in and once in . If

, define an operator associated with system (3), ,

from to by

(4)

where

In this paper, we let denote the class of continuous strictly

increasing functions from to with . Let

denote the class of functions with as

. Functions in and are called class and

functions, respectively. If , its inverse function is denoted

by with domain . We also denote by and

if and is convex and concave, respectively.

The purpose of this paper is to further develop the Razu-

mihkin-type theorems on stability of HSRSs initiated by [12].

Let us begin with the following definitions (see, e.g., [2], [6],

[7], and [11])

1) Definition 2.1: The trivial solution of (3) or, simply, (3) is

said to be:

1) stochastically stable or stable in probability if for every pair

of and , there exists such

that

whenever ;

2) stochastically asymptotically stable if it is stochastically

stable and, moreover, for every , there exists

such that

whenever ;

3) globally stochastically asymptotically stable if it

is stochastically stable and, moreover, for all

,
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2) Definition 2.2: The trivial solution of (3) or, simply, (3) is

said to be:

1) th moment stable if, for every , there exists

such that

whenever ;

2) th moment asymptotically stable if it is -th moment

stable and, moreover, for every , there exist

and such that

whenever ;

3) globally th moment asymptotically stable if it is th mo-

ment stable and, moreover, for all ,

According to the above definitions, it is easy to verify that

(global) th moment (asymptotic) stability implies (global) sto-

chastic (asymptotic) stability.

II. ASYMPTOTIC STABILITY OF HSRSS

As the main results of this paper, we present the Razumikhin-

type theorems on general stability of HSRSs (3) as follows.

1) Theorem 3.1: Let , , , and

be a nonnegative continuous function

with if . Assume that there exists a

function such that

(5)

and, moreover, for all

(6)

for all and those satisfying

(7)

on , where is a continuous

nondecreasing function with respect to for all and

. Moreover, for all and .

Then, the trivial solution of HSRS (3) is globally th moment

asymptotically stable.

Proof: Fix the initial data and ex-

tend to by setting for all .

Noting that is continuous and is right continuous for

all , we see that is right continuous on

. Define

(8)

We claim that

(9)

To show inequality (9), for each (fix for the moment),

we define

(10)

Obviously, is either less than 0 or equal to 0.

If , then

(11)

It follows from the right continuity of that for

every sufficiently small

hence

If , then

(12)

Note that either or

. In the former case, i.e., , inequalities

(12) and (5) yield that a.s. for all .

Recalling that and , we see

for all , hence and . In

the other case when , the above inequality

(12) implies

(13)

Consequently, inequality (7) holds, that is,

on all . Moreover, by condition (5) and Jensen’s

inequality, yields . Thus,

by condition (6), we have

(14)

for all . By the right continuity of the processes

concerned, we see that, for all sufficiently small, we have
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By a formula derived from generalized Itô’s lemma (see [17]

and [12]) and Fubini’s theorem, we observe

(15)

Hence, we have

Inequality (9) has been proved. It follows immediately that

(16)

Together with the definition of , condition (5) and Jensen’s

inequality, the above inequality (16) yields

(17)

So, for any , we can find such that

whenever . The th moment stability is proved.

Now, we proceed to show the convergence of

as . Fix any initial data . Let

and be such that and . So,

by inequalities (16) and (17), we have

and for all . Suppose is arbitrary.

We need to show there is a number such that

for all . This will be true by condition

(5) and Jensen’s inequality if we show that

for all .

From the property of function , there is a positive real

number such that for all

and . Let be the minimal nonnegative integer

such that , and

. So , since

with if . Let

and with .

We claim that for all . First

we show that for all .

Let .

If , then, , we have

This, by condition (6), implies

Consequently, by formula (15), we see

which contradicts the positive property of . So,

and . In fact,

, we have

because

Thus, we have for all

.

Define

for . By the same type of reasoning

as above, we have

for all and .

In particular, for all . This

completes the proof.

2) Theorem 3.2: Let , , , and

be a nonnegative continuous function

with if . Assume that there exists a

function such that

(18)

and, moreover, for all

(19)

for all and those satisfying

(20)

on , where is a continuous

nondecreasing function with respect to for all

and . Moreover, for all , for

all and as . Then, the trivial solution

of HSRS (3) is globally th moment asymptotically stable.
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Proof: As above, the proof is composed of tow parts. The

first part to show the th moment stability of (3) is similar to that

for Theorem 3.1. One only needs to note that from the property

of holds

(21)

Inequalities (12) and (21) imply that condition (20) is satisfied.

Moreover, implies . Thus,

by condition (19) and the property of , we are led to

(14) in the case when .

The other part to show the convergence of as

is slightly different and given as follows.

Numbers , , , and are defined as above while the positive

real number , where and are such

that, for all , we have

Let us now consider the expectation of function

for any

Obviously, there is a positive number such that

(22)

for any whenever , where

Let be the minimal nonnegative integer such that

, and with .

To prove that for all , we

first show that for all

. Let

. If , then , we have

(23)

for all . This, by condition (19), implies

Consequently, we see

which contradicts the positive property of .

Thus, and . Moreover,

,

we have because inequality

(20), or say, (23) holds on . Thus, we have

for all .

Define

for . By the same type of reasoning,

we have

for all and .

Therefore, for all . The

proof is complete.

III. APPLICATION

Hybrid stochastic delay systems (HSDSs) described with sto-

chastic differential delay equations with Markovian switching
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are an important class of HSRSs that are frequently used in en-

gineering. As an illustrative example of applications of our new

results, we consider the following HSDEs.

Let us consider the HSDSs of the form

(24)

on with initial data , where

is Borel measurable while

and

are measurable functions with and

for all . Assume that (24) only has

continuous solutions. This is a special case of (3) with

for . If

, for the special case of (24) the operator defined

in (4) becomes from to as

(25)

To give our new result for the HSDSs (24), let us introduce one

more notation that are the collection of all -mea-

surable -valued random variables such that

and state the corresponding version of Theorem

3.2 for (24) as follows.

1) Theorem 4.1: Let , and

be a nonnegative continuous function with

for . Assume that there exists a

function such that

(26)

and, moreover, for all , let

(27)

for all and those satisfying

(28)

where is a continuous nondecreasing function

with respect to for all and . Moreover,

for all , for all and

as . Then, the trivial solution of HSDS (24) is globally

th moment asymptotically stable.

This is a corollary from Theorem 3.2 and will be used to es-

tablish the following useful result.

2) Theorem 4.2: Let , ,

and be a continuous nondecreasing function

with respect to for all and . Moreover

for all and . Assume that

there exists a function such that

inequality (26) is satisfied and, moreover, for all ,

, and , assume

(29)

Then, the trivial solution of HSDS (24) is globally th moment

asymptotically stable.

Proof: In condition (28), let

(30)

For all and satisfying condition (28)

with function (30), i.e.,

from inequality (29), Fatou’s lemma, and condition (26), we

have

for all . Since for all and

, it is easy to verify that if

. Let in condition

(27), then the conclusion follows from Theorem 4.1.

3) Remark 4.1: In many cases, this useful criterion may be

applied with , , and for

. In a special case when and

for all , the above result is exactly [12, Theorem

4.2]. However, our result works for the particular cases when

for some , to which the existing

results (see [12]–[16] and [22]) do not apply.

Using the above skills, Theorem 4.2 can be developed to cope

with systems with multiple delays of the form

(31)
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on , where is Borel measurable,

.

Let us state the following generalized result, which can be

proven in the same way as in the proof of Theorem 4.2.

4) Theorem 4.3: Let , , and

such that for all

. Let be a continuous nondecreasing

function with respect to for all and

. Moreover for all and .

Assume that there exists a function

such that inequality (26) is satisfied and, moreover, for

all , and ,

(32)

Then, the trivial solution of HSDS (31) is globally th moment

asymptotically stable.

IV. EXAMPLES

1) Example 5.1: Let us now return to the scalar HSDS (1).

For the previous calculation (2), let

in condition (29). It immediately follows from Theorem 4.2 that

the trivial solution of system (1) is mean-square asymptotically

stable. Clearly, this is in fact an application of Theorem 3.2. Al-

ternatively, we can use Theorem 3.1 and have the same conclu-

sion. Let

in condition (7), then the previous calculation (2) yields

when condition (7) is satisfied. Let

in inequality (6), then the inequality holds. According to The-

orem 3.1, this implies that the trivial solution of system (1) is

mean-square asymptotically stable.

2) Example 5.2: Let be a right-continuous Markov chain

taking values in with generator

and independent of the scalar Brownian motion . Let ,

, , be positive numbers with for and

be Borel measurable. Consider the following

HSDS:

(33)

on , where

To examine the stability of system (33) in a mean-square sense,

we construct a function by

where and are positive constants to be determined.

By calculation, we have

It is easy to show that there exist positive numbers and

such that

when the following inequalities are satisfied:

Since for , by Theorem 4.2, we can conclude that

system (33) is mean-square asymptotically stable if the above

inequalities hold.

V. CONCLUSION

In this paper, the general th moment asymptotic stability of

HSRSs (3) is studied with Razumikhim-type arguments. The-

orems on asymptotic stability are established. Their applica-

tions to HSDSs (24) and (31) are also proposed. The Razu-

mikhin-type theorems work for many HSRSs including some

complicated cases to which the existing results do not apply.

In a special case of the above results when

for all with , using the

techniques similar to [16], Razumikhin-type theorems on gen-

eralized exponential stability of HSRSs (3) may be obtained.

By Fatou’s lemma, we note that conditions (7) and (20) are less

conservative than that in the existing results (see [12] and [16])

and are convenient in application.



3420

ACKNOWLEDGMENT

The authors would like to thank the reviewers, Associate Ed-

itor, and Editor-in-Chief for their helpful comments.

REFERENCES

[1] D. Chatterjee and D. Liberzon, “On stability of randomly switched
nonlinear systems,” IEEE Trans. Autom. Control, vol. 52, no. 12, pp.
2390–2394, Dec. 2007.

[2] Z. Feng and Y. Liu, Stability Analysis and Stabilization Synthesis of

Stochastic Large Scale Systems. Beijing, China: Science Press, 1995.
[3] J. K. Hale, Theory of Functional Differential Equations. New York:

Springer-Verlag, 1977.
[4] I. A. Hiskens, “Power system modeling for inverse problems,” IEEE

Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 4, pp. 539–551, Apr.
2004.

[5] L. Huang and F. Deng, “Robust stability of perturbed large-scale multi-
delay stochastic system,” Dynam. Contin. Discreet, Impulsive Syst. B,
vol. 9, pp. 525–537, 2002.

[6] V. B. Kolmanovskii and V. R. Nosov, Stability of Functional Differen-

tial Equations. New York: Academic, 1986.
[7] V. B. Kolmanovskii and A. Myshkis, Introduction to the Theory and

Applications of Functional Differential Equations. Dordrecht, The
Netherlands: Kluwer Academic, 1999.

[8] J. Krupar and W. Schwarz, “EMI tuning of hybrid systems by periodic
patterns,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 9, pp.
2060–2067, Sep. 2006.

[9] G. S. Ladde, “Differential inequalities and stochastic functional differ-
ential equations,” J. Math. Phys., vol. 15, pp. 738–743, 1974.

[10] H. Lin and P. J. Antsaklis, “Switching stabilizability for continuous-
time uncertain switched linear systems,” IEEE Trans. Autom. Control,
vol. 52, pp. 633–646, 2007.

[11] X. Mao, Stochastic Differential Equations and Applications. Chich-
ester, U.K.: Horwood Publishing, 1997.

[12] X. Mao, “Stochastic functional differential equations with Markovian
switching,” Functional Differential Equations, vol. 6, pp. 375–396,
1999.

[13] X. Mao, A. Matasov, and A. B. Piunovskiy, “Stochastic differential
delay equations with Markovian switching,” Bernoulli, vol. 6, pp.
73–90, 2000.

[14] X. Mao and L. Shaikhet, “Delay-dependent stability criteria for sto-
chastic differential delay equations with Markovian switching,” Stab.

Control: Theory Appl., vol. 3, pp. 87–101, 2000.
[15] X. Mao, “Exponential stability of stochastic delay interval systems

with Markovian switching,” IEEE Trans. Autom. Control, vol. 47, pp.
1604–1612, 2002.

[16] X. Mao, J. Lam, S. Xu, and H. Gao, “Razumikhin method and expo-
nential stability of hybrid stochastic delay interval systems,” J. Math.

Anal. Appl., vol. 314, pp. 45–66, 2006.
[17] A. V. Skorohod, Asymptotic Methods in the Theoryof Stochastic Dif-

ferential Equations. Providence, RI: Amer. Math. Society, 1989.
[18] X. Sun, W. Wang, G.-P. Liu, and J. Zhao, “Stability analysis for linear

switched systems with time-varying delay,” IEEE Trans. Syst., Man,

Cybern. B, Cybern., vol. 38, pp. 528–533, 2008.
[19] Z. Sun, “A note on marginal stability of switched systems,” IEEE

Trans. Autom. Control, vol. 53, pp. 625–631, 2008.
[20] B. Xu, “Necessary and sufficient conditions of generalized exponential

stability for retarded dynamic systems,” J. Control Theory Appl., vol.
16, pp. 802–806, 1999.

[21] B. Xu, “Stability of retarded dynamic systems: A Lyapunov function
approach,” J. Math. Anal. Appl., vol. 253, pp. 590–615, 2001.

[22] D. Yue and Q.-L. Han, “Delay-dependent exponential stability of sto-
chastic equations with time-varying delay, nonlinearity, and Markovian
switching,” IEEE Trans. Autom. Control, vol. 50, pp. 217–222, 2005.

Lirong Huang (S’08) received the B.E. and M.E.
degrees from South China University of Technology,
Guangzhou. He is currently working toward the
Ph.D. degree at the University of Strathclyde,
Glasgow, U.K.

His research is concerned with stability and stabi-
lization of stochastic delay systems.

Xuerong Mao received the Ph.D. degree from War-
wick University, Coventry, U.K., in 1989.

He was then SERC (Science and Engineering
Research Council, U.K.) Post-Doctoral Research
Fellow from 1989 to 1992. Moving to Scotland, he
joined the Department of Statistics and Modelling
Science, University of Strathclyde, Glasgow, as a
lecturer in 1992, was promoted to Reader in 1995,
and was made Professor in 1998, which post he
still holds. He has authored five books and over 180
research papers. His main research interests lie in the

field of stochastic analysis including stochastic stability, stabilization, control,
numerical solutions.

Dr. Mao is a Fellow of the Royal Society of Edinburgh (FRSE). He is also a
member of the editorial boards of several international journals, including the
Journal of Stochastic Analysis and Applications and the Journal of Dynamics

of Continuous, Discrete and Impulsive Systems Series B.

Feiqi Deng received the Ph.D. degree in control
theory and control engineering from South China
University of Technology, Guangzhou, in 1997.

From July 1997 to September 1999, he was an
Associate Professor with the College of Automation
Science and Engineering, South China University of
Technology. Since October 1999, he has been a Pro-
fessor and the Director of the Systems Engineering
Institute of College of Automation Science and
Engineering, South China University of Technology.
His main research interests include stability, stabi-

lization, and robust and variable structure control theory of complex systems,
including time-delay systems, nonlinear systems and stochastic systems, and
machine learning. In these areas, he has authored/coauthored more 400 journal
papers and one book in English and Chinese. Since 2002, he has been serving
as a vice chief editor of the Journal of South China University of Technology

and editor of Control Theory and Applications as well as the Journal of Systems

Engineering and Electronics.




