Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

A note on the rate of convergence of the Euler-Maruyama method for stochastic differential equations

Mao, X. and Yuan, C. (2008) A note on the rate of convergence of the Euler-Maruyama method for stochastic differential equations. Stochastic Analysis and Applications, 26 (2). pp. 325-333. ISSN 0736-2994

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The recent article [2] reveals the strong convergence of the Euler-Maruyama solution to the exact solution of a stochastic differential equation under the local Lipschitz condition. However, it does not provide us with an order of convergence. In this note, we will show the rate of convergence still under the local Lipschitz condition, but the local Lipschitz constants of the drift coefficient, valid on balls of radius R, are supposed not to grow faster than log R while those of the diffusion coefficient are not than.