Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

A note on the rate of convergence of the Euler-Maruyama method for stochastic differential equations

Mao, X. and Yuan, C. (2008) A note on the rate of convergence of the Euler-Maruyama method for stochastic differential equations. Stochastic Analysis and Applications, 26 (2). pp. 325-333. ISSN 0736-2994

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The recent article [2] reveals the strong convergence of the Euler-Maruyama solution to the exact solution of a stochastic differential equation under the local Lipschitz condition. However, it does not provide us with an order of convergence. In this note, we will show the rate of convergence still under the local Lipschitz condition, but the local Lipschitz constants of the drift coefficient, valid on balls of radius R, are supposed not to grow faster than log R while those of the diffusion coefficient are not than.