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Abstract. In this paper we develop previously studied mathematical models

of the regulation of testosterone by luteinizing hormone and luteinizing hor-

mone release hormone in the human body. We propose a delay differential

equation mathematical model which improves on earlier simpler models by

taking into account observed experimental facts. We show that our model

has four possible equilibria, but only one unique equilibrium where all three

hormones are present. We perform stability and Hopf bifurcation analyses on

the equilibrium where all three hormones are present. With no time delay this

equilibrium is unstable, but as the time delay increases through an infinite

sequence of positive values Hopf bifurcation occurs repeatedly. This is of prac-

tical interest as biological evidence shows that the levels of these hormones in

the body oscillate periodically. We next discuss stability of the other equilib-

ria heuristically using analytical methods. Then we describe simulations with

realistic parameter values and show that our model can mimic the regular

fluctuations of the three hormones in the body and explore numerically some

of our heuristic conjectures. A brief discussion concludes the paper.

1. Introduction

As pointed out by Cartwright and Husain (1986) blood testosterone levels fluc-
tuate over the short term (2-3 hours) in humans. Testosterone production in the
testis is influenced by the level of pituitary hormone, luteinizing hormone (LH).
LH is produced by the gonadotrophs, those pituitary cells which secrete it. The
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production of LH in turn is influenced by the level of the hypothalamic hormone
luteinizing hormone release hormone (LHRH), sometimes also called gonadotropin
releasing hormone (Liu and Deng, 1991). LHRH is secreted by the neurones in the
medio-basal hypothalamus.

Several models have been postulated to try to explain the cyclic release of this
set of hormones. The first type of model has no external pulse input. Instead
the regular cyclic oscillations in the levels of the three hormones are a natural
consequence of the dynamic interaction between them, or in other words “feedback
oscillations”. It is this first type of model which will concern us in this paper.

The second type of model hypothesizes a “neural clock”, which forces pulsed
secretion of LHRH in waves, hence driving the hormonal system consisting of the
three hormones. For practical reasons LHRH release in the brain is virtually impos-
sible to sample in humans. In general it is a lot easier to measure levels of hormone
in the blood rather than hormone secretion levels. There is divided opinion in the
literature on whether this type of model is valid. Cartwright and Husain (1986)
state that this type of model does not describe the inhibitory effect of gonadal
steroids on the LHRH pulse generator and leads to other inconsistencies with the
observed data. On the other hand there is a body of biological opinion which be-
lieves that LHRH and LH release is pulsatile, released in irregular stochastic pulses.
Dierschke et al. (1970) say that this was first discovered in the rhesus monkey, and
then later in man and other species. For LH release Veldhuis et al. (1987) applied
discrete devolution to LH time series which suggested that the majority of human
hormone secretion could occur in discrete, self-limited bursts generated at random
intervals.

One of the simplest models which attempted to explain the pulsatile release of
these three hormones is due to Smith (1980). R(t) denotes the density of LHRH,
L(t) the density of LH and T (t) the density of testosterone in the bloodstream at
time t. Smith’s model is given by the following differential equations:

dR

dt
= f(T )− b1(R),

dL

dt
= g1(R) − b2(L)(1)

and
dT

dt
= g2(L) − b3(T ).

f is monotonic decreasing and the functions b1, b2, b3, g1 and g2 are monotonic
increasing. All of these functions are positive.

Although this model does explain the cyclic fluctuations in the levels of the
three hormones there is a problem with it as it fails to explain the experimental
observations that the concentrations of LH and LHRH in the blood after castration
still oscillate.

Smith (1983) later tried to improve this model by introducing a time delay τ
between the LH concentration and the production of testosterone. This time delay
is due to delay between stimulation of the testis by LH and the ultimate release
of testosterone into the blood stream and the delay from the transportation time
due to the hormone travelling round the body from source to destination. Smith’s
improved model is the same as (1) above except that in the third equation the term
g2(L(t)) is replaced by g2(L(t − τ)):
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dR

dt
= f(T )− b1(R),

dL

dt
= g1(R) − b2(L)(2)

and
dT

dt
= g2(L(t − τ)) − b3(T ).

Murray (1989) analyzed this model with b1(R) = b1R, b2(L) = b2L, b3(T ) =
b3T, g1(R) = g1R and g2(L) = g2L, where b1, b2, b3, g1 and g2 are positive con-
stants. By using a linear analysis Murray showed that there is a critical time delay
τc such that the positive steady state of Smith’s model (2) is linearly unstable due
to growing oscillations. For certain parameter values limit cycle periodic solutions
could occur.

Ruan and Wei (2001) also considered the general model of Smith (1983) which
included a time delay, where again b1, b2, b3, g1 and g2 are general positive mono-
tone increasing functions. They show that for certain parameter values the unique
positive steady state of this model is locally asymptotically stable whatever the
value of the time delay. However for other parameter values there is a critical
time delay such that this unique positive steady state is locally asymptotically sta-
ble when the time delay is less than this critical value. As the time delay passes
through the critical value there is a Hopf bifurcation and the steady state becomes
unstable. So this model can explain the regular cyclic fluctuations of these three
hormones for certain parameter values.

Cartwright and Husain (1986) postulated another model with differential equa-
tions as follows:

dR

dt
= −dRR + rRH

[

2 − L(t − τA)

L0
− T (t − τB)

T0

]

,

dL

dt
= −dLL + rLR(t − τC)

and
dT

dt
= −dT T + rT L(t − τD − τE).

Here dR, dL, dT , rR, rL and rT are all rate constants. τA, τB, τC , τD and τE

are all time delays. H(x) is the Heaviside step function,

H(x) =







0, x < 0,
1
2 , x = 0,
1, x > 0.

This model accounts for the pulsatile release of the three hormones in men. It can
also explain the cyclic behaviour of LHRH and LH after castration. Nevertheless
there are some problems associated with it. These problems are also associated
with Smith’s (1983) model and are discussed in Liu and Yang (1990).

Liu and Yang (1990) proposed an improved version of this model. However there
were still biological problems associated with the improved model. In particular it
still contained a Heaviside step function which has no obvious biological meaning
and it ignores the dynamic interaction of the number of Leydig cells with the three
hormone system. Liu and Deng (1991) further improve on Liu and Yang’s model
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by formulating a four dimensional differential equation model taking account of the
number of Leydig cells. This model does not contain any time delay as Liu and
Yang considered the biological evidence for a time delay to be equivocal. However
the number of Leydig cells is then assumed to be at a quasi-steady state and so the
system of differential equations again reduces to a set of three rather complicated
differential equations. The model is fitted to data and explains the regular pulsatile
release of the three hormones, both before and after castration.

2. Mathematical Model

It is important to include as many experimental facts as possible to make the
model more realistic. Further experimental evidence is contained in the works of
Dluzen and Ramirez, 1983, Ellis and Desjardins, 1984 and Steiner et al. 1982 who
observed the effects of testosterone on the hypothalamus and Motta et al. 1969
and Gay, 1974 who observed the effects of LH on the hypothalamus with the help
of data.

Our differential equation model which describes the population dynamics of the
hypothalamic hormone, R, the pituitary hormone, L and testosterone T is

dR

dt
=

b1R

(L + b3T )a
− b2R,

dL

dt
= c1

RaL

Ra + b5T a
− c2L(3)

and
dT

dt
= b6L(t − τ)T − b4T,

with suitable initial conditions. Here a, b1, b2, . . . , b6, c1 and c2 are strictly positive
constants. This model takes into account the fact that LHRH encourages the
production of LH which in turn encourages the production of testosterone. There is
also a time delay between stimulation of the testis by LH and the rise in testosterone
level in the bloodstream. The rate of removal of all three hormones from the
bloodstream is taken to be proportional to their concentration as in Murray (1989).

To explain the first differential equation in (3) note that the release of LHRH by
the hypothalamus is influenced by the combined effect of the LH and testosterone
hormones. If the concentrations of LH and testosterone are small then LHRH
production will be high and vice-versa if the weighted combined concentration of
LH and testosterone is high. The second equation in (3) is explained similarly. The
secretion of LH will be high if the level of testosterone is small and the concentration
of LHRH is high. On the other hand the LH secretion is low if testosterone is
high and LHRH concentration is low. The parameter value a = 1 gives a simple
mathematical model including these effects. The two properties above are amplified
greatly for higher values of a. The assumption that the rate of production of LHRH
is also proportional to LHRH has similarities with the model of Liu and Deng (1991)
who assume production of R proportional to a1 + a2R + a3R

2 where a1, a2 and a3

are constants and we assume similar feedback in the L and T equations.
Note that the model is not well defined if L = T = 0 or R = T = 0. This is not a

major problem as we are primarily interested in the biologically relevant situation
where all three hormones are present and the dynamics of the feedback system in
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this region, but it needs to be born in mind in our mathematical analysis of the
system.

Khan et al. (1986) and Meredith et al. (1986) experimentally proved that secre-
tion of testosterone is not only stimulated by the pituitary hormone LH, but it has
an autonomous secretion which comes from the adrenal cortex and is independent
of LH. However this value is small (only about 5% of the normal value, (Cartwright
and Husain, 1986)) so we ignore it.

LH stimulates the secretion of androgen and produces a number of Leydig cells.
However we have not included the number of Leydig cells as a separate class as Liu
and Deng (1991) successfully argued that the proliferation of Leydig cells is small
and that they could be regarded as being in a quasi-steady state.

Our model follows the classical models of Smith (1980, 1983) and Cartwright
and Husain (1986) in that it assumes that testosterone concentration inhibits the
production of LHRH. As in Cartwright and Husain (1986) we are including the
experimental facts from our model that both testosterone and luteinizing hormone
inhibit LHRH production, although we take a slightly different functional form for
this mechanism (namely b1R/(L+b3T )a, where b1 and b3 are positive constants) as
the Heaviside step function which they use has no obvious biological justification.
As in Cartwright and Husain’s model low levels of testosterone and LH encourage
LHRH secretion.

As in Smith’s (1980, 1983) model we assume that the rate of production of LH
is a monotone increasing function of the LHRH density. Cartwright and Husain
(1986) and Murray (1989) assume that this is proportional to the LHRH density
but many experiments (Nagayama, 1977 and Chase, 1983) showed that this was
not necessarily so, and as the dose of injected LHRH increases, the rates of increase
of LH may also saturate (see also Mendelson et al. 1975 and O’Connor et al. 1980).
Moreover Nagayama, 1977, Caminos-Torres, 1977 and Scheckter et al. 1989 showed
that testosterone directly inhibits the secretion of LH. We include the biological
evidence in our model by taking the rate of LH production to be c1R

aL/(Ra+b5T
a)

where b5 and c1 are positive constants.
Exactly how concentrations of hypothalamic blood LH and testosterone levels

combine to regulate LHRH production is open to question. Cartwright and Hu-
sain (1986) assume a linear combination for simplicity but suggest a multiplicative
combination as another possibility.

As in the models of Smith (1983), Murray (1989) and Cartwright and Husain
(1986) we assume that levels of LH affect the production of testosterone in the
testis. This is supported by experimental evidence described by Sharpe (1986).
As in the models of Smith, Murray, and Cartwright and Husain, as the levels of
LH decline then the production of testosterone in the testis also decays. A time
delay occurs between testis stimulation by LH and the release of testosterone into
the bloodstream. This includes the delay corresponding to the time taken for the
hormones to travel across the body.

The significance of our model is that it incorporates additional experimental facts
over most previously studied models. Firstly we have postulated specific functional
forms for the effect of LH and testosterone on LHRH production and LHRH and
T on LH production. These qualitative effects on the production functions are
supported by biological evidence as described below. This improves on the models
of Smith (1980, 1983), Murray (1989) and Ruan and Wei (2001) who assumed that
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these were functions of respectively testosterone and LHRH only. It also improves
on the model of Cartwright and Husain (1986) who took the production of LH to
be a function of LHRH only.

Our model has qualitative similarities with the models of Liu and Yang (1990)
and also with the models of Liu and Deng (1991) (except that it does not contain
a class of Leydig cells). However our model is simpler as there are many constants
in their models which have no obvious biological interpretation. Also our model
improves on theirs in that it incorporates a biologically realistic time delay in the
testosterone production function corresponding to the delay between the stimula-
tion of the testis by LH and the delay from the transportation time due to the
hormone travelling around the body from source to destination. In brief summary
the importance of our model is that it incorporates extra qualitatively observed
biological mechanisms which previous models did not.

Theorem 1

The possible equilibria of the system (3) are:

(i) E1 : R = 0, T = 0 and L = 0;

(ii) E2 : R = T = 0 and L = L where L > 0 is any positive constant;

(iii) E3 : R = R, T = 0 and L =

(

b1

b2

)
1

a

. Here R > 0 is any positive constant.

This equilibrium is possible only for the special parameter values c1 = c2;

and

(iv) E4 : R = R∗ =
b

1

a

5

b3

[(

b1

b2

)
1

a

−b4

b6

]

(

c1

c2
− 1

)
1

a

, T = T ∗ =
1

b3

[

(

b1

b2

)
1

a

−b4

b6

]

and L = L∗ =

b4

b6
. This equilibrium is feasible only if c1 > c2 and b1b

a
6 > b2b

a
4.

Note that the term R/(L + b3T )a on the right hand side of (3) is not defined at
E1, also the term Ra/(Ra + b5T

a) is not defined at E1 or E2, but if the former is
interpreted as zero and the latter as any finite value at E1 and (c2/c1) at E2 these
equilibria are possible.

Proof of Theorem 1

Setting the right hand side of equations (3) to zero at an equilibrium value
R∗, T ∗, L∗ we deduce that

(i) R∗ = 0 or (L∗ + b3T
∗)a =

b1

b2
,

(ii) L∗ = 0 or 1 + b5

(

T ∗

R∗

)a

=
c1

c2
,

and

(iii) T ∗ = 0 or L∗ =
b4

b6
.
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The remainder of the proof is straightforward.

We are primarily interested in the stability of the system about the equilibrium
E4 which has all three hormones present. As E3 is possible only for special param-
eter values we do not examine it further. It is possible to regard E3 as a special
case of equilibrium E4 if c1 → c2, b1b

a
6 → b2b

a
4.

3. Stability Analysis of the Positive Equilibrium E4.

It is straightforward to show that the stability matrix of the system linearized
about the positive equilibrium E4 is





−ω −p −pb3

q −ω −r
0 b6T

∗e−ωτ −ω





where

p =
ab1R

∗

(L∗ + b3T ∗)a+1
, q =

c1b5L
∗aR∗a−1T ∗a

(R∗a + b5T ∗a)2
and r =

c1b5R
∗aL∗aT ∗a−1

(R∗a + b5T ∗a)2
.

This leads to the characteristic equation

ω3 + pqb3b6T
∗e−ωτ + pqω + rωb6T

∗e−ωτ = 0.

When τ = 0 this reduces to

ω3 + (pq + rb6T
∗)ω + pqb3b6T

∗ = 0,

and it is straightforward to use the Routh-Hurwitz criteria to show that this equi-
librium is unstable. In fact it has one strictly negative real root and two complex
roots with strictly positive real parts.

For τ ≥ 0 write ω = ξ + iη. The characteristic equation becomes

(ξ + iη)3 + pq(ξ + iη) + (pqb3 + r(ξ + iη))b6T
∗e−τ(ξ+iη) = 0.

Expanding and equating real and imaginary parts of this equation we deduce that

(4) ξ3 − 3ξη2 + pqξ + (pqb3 + rξ)b6T
∗e−τξ cos(τη) + ηrb6T

∗e−τξ sin(τη) = 0

and

(5) 3ξ2η − η3 + pqη + rb6T
∗ηe−τξ cos(τη) − (pqb3 + rξ)b6T

∗e−τξ sin(τη) = 0.

If ξ = 0, η = η∗ is a purely imaginary root corresponding to τ = τ∗ then

pqb3b6T
∗ cos(τ∗η∗) + η∗rb6T

∗ sin(τ∗η∗) = 0(6)

and

pqb3b6T
∗ sin(τ∗η∗) − η∗rb6T

∗ cos(τ∗η∗) = −η∗3 + pqη∗.(7)

Squaring and adding

(8) η∗6 − 2pqη∗4 + (pq)2η∗2 = (rb6T
∗η∗)2 + (pqb3b6T

∗)2.

Let u = η∗2, then

(9) u3 + d1u
2 + d2u + d3 = 0,

where d1 = −2pq, d2 = (pq)2 − (rb6T
∗)2 and d3 = −(pqb3b6T

∗)2.
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This equation (9) in u always has one positive real root and must have either
exactly one or exactly three positive real roots. Let f(u) = u3 + d1u

2 + d2u + d3.
The turning points of f(u) satisfy

3u2 + 2d1u + d2 = 0,

so are u1 =
2pq −

√

p2q2 + 3r2b2
6T

∗2

3

and u2 =
2pq +

√

p2q2 + 3r2b2
6T

∗2

3
.

For three positive real roots we need u1, u2 > 0, i.e. pq > rb6T
∗ which is

equivalent to aaba+1
2 > b1b

a
6 . We also need

∆ =
4

27
d3
2 −

1

27
d2
1d

2
2 +

4

27
d3
1d3 −

2

3
d1d2d3 + d2

3 < 0.

Note that ∆ = f(u1)f(u2), see Khan and Greenhalgh (1999).

Lemma 1

The equation f(u) = 0 cannot have three co-incident positive real roots.

Proof of Lemma 1

If it does and the roots are u1, u2 and u3 then u1 = u2 = u3 =
2pq

3
so

d2 = u1u2 + u2u3 + u1u3 =
4p2q2

3
> (pq)2 − (rb6T

∗)2 = d2.

This is a contradiction proving the lemma.

Theorem 2

(i) If aaba+1
2 > b1b

a
6 and ∆ < 0 then f(u) = 0 has three strictly positive distinct

real roots;

(ii) If aaba+1
2 > b1b

a
6 and ∆ = 0 then f(u) = 0 has three strictly positive real roots

one of which is repeated

and

(iii) If aaba+1
2 ≤ b1b

a
6 or ∆ > 0 then f(u) = 0 has exactly one strictly positive real

root.

Proof of Theorem 2

Note that f(0) < 0 and f(u) → ∞ as u → ∞.

(i) u1, u2 > 0 and f(u1)f(u2) < 0 hence f(u) = 0 has one root in each of the
intervals (0, u1), (u1, u2) and (u2,∞).

(ii) Here u1, u2 > 0 and f(u1) = 0 or f(u2) = 0 so either u1 or u2 is a repeated
root of f(u) = 0. If u1 is the repeated root then the other root lies in (u2,∞). If
u2 is the repeated root then the other root lies in (0, u1).

(iii) If aaba+1
2 ≤ b1 then u1 ≤ 0. f(u) is decreasing in (u1, u2) and increasing in

(u2,∞) so has exactly one strictly positive root which must lie in (u2,∞). If ∆ > 0
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then f(u) does not change sign in (u1, u2) so has at most one strictly positive real
root.

Corollary 1

The equation f(u) = 0 always has at least one simple real root.

We shall now show how the positive real roots u∗ of f(u) = 0 correspond to
critical time delays τ∗ at which potential Hopf bifurcation may occur. If u∗ is a
strictly positive real root of f(u) = 0 and η∗ =

√
u∗ then the equations

sinα =
pqb3

√

(pqb3)2 + (η∗r)2

and cosα =
η∗r

√

(pqb3)2 + (η∗r)2

determine α ∈ [0, π/2) uniquely. From (6) and (7)

sin(τ∗η∗ + α) = 0

and cos(τ∗η∗ + α) =
(η∗3 − pqη∗)

b6T ∗

√

(pqb3)2 + (η∗r)2

determine α+ τ∗η∗ uniquely in the range [0, 2π∗). In fact τ∗η∗ +α = β∗

0(η∗) where
β∗

0(η∗) = 0 or π, depending on whether or not η∗ >
√

pq. Hence τ∗η∗ + α =
β∗

0(η∗) + 2kπ, for some integer k, so τ∗ = ((β∗

0 (η∗) + 2kπ − α)/η∗) for k ≥ 1
if β∗

0(η∗) = 0, and for k ≥ 0 if β∗

0(η∗) = π. For β∗

0(η∗) = 0, k ≤ 0 and for
β∗

0(η∗) = π, k < 0, give negative values of τ which are infeasible.
The conditions for a Hopf bifurcation to occur as τ passes through τ∗ are that a

complex conjugate pair of eigenvalues cross the imaginary axis as τ passes through
τ∗ and the crossing is transversal

i.e.
dξ

dτ

∣

∣

∣

∣

∣

τ=τ∗

6= 0.

We now show that provided that the corresponding value of u∗ is a simple root
of (9) this tranversality condition is satisfied. Differentiating equations (4) and (5)
with respect to τ and then setting ξ = 0, η = η∗ and τ = τ∗ we deduce that

dξ

dτ

∣

∣

∣

∣

∣

τ=τ∗

P +
dη

dτ

∣

∣

∣

∣

∣

τ=τ∗

Q = R,

and
dξ

dτ

∣

∣

∣

∣

∣

τ=τ∗

(−Q) +
dη

dτ

∣

∣

∣

∣

∣

τ=τ∗

P = S,

where P = −3η∗2 + pq + rb6T
∗ cos(τ∗η∗) − τ∗pqb3b6T

∗ cos(τ∗η∗)

−τ∗η∗rb6T
∗ sin(τ∗η∗),

Q = −pqb3b6T
∗τ∗ sin(τ∗η∗) + rb6T

∗ sin(τ∗η∗) + η∗rτ∗b6T
∗ cos(τ∗η∗),

R = pqb3b6T
∗η∗ sin(τη∗) − η∗2rb6T

∗ cos(τ∗η∗)

and S = rb6T
∗η∗2 sin(τ∗η∗) + pqb3b6T

∗η∗ cos(τ∗η∗).
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Solving for
dξ

dτ

∣

∣

∣

∣

τ=τ∗

we deduce that

(10)
dξ

dτ

∣

∣

∣

∣

τ=τ∗

=
PR − QS

P 2 + Q2
.

Note that PR − QS =
(

−3η∗2 + pq + rb6T
∗ cos(τ∗η∗)− τ∗pqb3b6T

∗ cos(τ∗η∗)− τ∗η∗rb6T
∗ sin(τ∗η∗)

)

×
(

pqb3b6T
∗η∗ sin(τ∗η∗)− η∗2rb6T

∗ cos(τ∗η∗)
)

−
(

−pqb3b6T
∗τ∗ sin(τ∗η∗) + rb6T

∗ sin(τ∗η∗) + η∗rb6T
∗τ∗ cos(τ∗η∗)

)

×
(

rb6T
∗η∗2 sin(τ∗η∗)+pqb3b6T

∗η∗ cos(τ∗η∗)
)

,

= (−3η∗2 + pq)η∗(−η∗3 + pqη∗)

+ rb6T
∗ cos(τ∗η∗)

(

pqb3b6T
∗η∗ sin(τ∗η∗)−η∗2rb6T

∗ cos(τ∗η∗)
)

− rb6T
∗ sin(τ∗η∗)

(

rb6T
∗η∗2 sin(τ∗η∗)+pqb3b6T

∗η∗ cos(τ∗η∗)
)

,

using (6) and (7),

= η∗2
[

3η∗4 − 4pqη∗2 +
(

(pq)2 − (rb6T
∗)2
)]

,

= η∗2 df

du

∣

∣

∣

∣

η∗2

6= 0,(11)

as u∗ is a simple root of (9).

Moreover if P = Q = 0 then R = S = 0, so −η∗3 + pqη∗ = 0. Therefore from
(8) (rb6T

∗η∗)2 + (pqb3b6T
∗)2 = 0, a contradiction. Hence from (10),

dξ

dτ

∣

∣

∣

∣

τ=τ∗

6= 0.

We deduce that if u∗ corresponds to a simple root of (9) Hopf bifurcation occurs
as τ passes through τ∗.

Hence for τ = 0 the model (3) is unstable and whenever τ passes through a

value τ∗ = (β∗

0 (η∗)+ 2kπ−α)/η∗ corresponding to η∗ =
√

u∗, where u∗ is a simple
root of f(u) = 0, Hopf bifurcation occurs. As f(u) = 0 has either one or three
positive simple roots there are an infinite number of such values of τ∗ separated by
2π/η∗. Hence we expect that as τ increases the model starts off unstable and as τ
passes through progressively increasing values Hopf bifurcation occurs repeatedly.
In the regions where the equilibrium with all three hormones present is unstable we
might expect limit cycle behaviour as observed biologically and found in simpler
simulation models (Murray, 1989), but chaotic behaviour is another possibility. We
shall explore this by simulation in Section 8.
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4. Stability of the Zero Equilibrium

If R, L and T are all small and strictly positive for t ≥ 0 then R → ∞ as t → ∞
so the equilibrium E1 is never locally asymptotically stable.

5. Heuristic Discussion of Behaviour when c2 > c1 or b2b
a
4 > b1b

a
6.

If c2 > c1 or b2b
a
4 > b1b

a
6 then the equilibrium with all three hormones present

is not possible. If c2 > c1 then it is straightforward to show that L and T tend to
zero and R tends to infinity as t becomes large.

If c1 > c2 and b2b
a
4 > b1b

a
6 then the potential behaviour is more interesting.

Define L̂ to be the unique positive root of

−b1

La
+ b2 = −b6L + b4.

Note that L̂ < (b4/b6).

For L ≤ (b1/b2)
1

a indefinitely, 0 ≤ T ≤ T0e
−pt → 0 as t → ∞, where p =

(b4 − b6(b1/b2)
1

a ) > 0. Hence

1

R

dR

dt
=

b1

(L + b3T )a
− b2 → b1

La
− b2 ≥ 0, as t → ∞.

So given ǫ1 with p > ǫ1 > 0 there exists t0 such that for t ≥ t0,

R(t) ≥ R(t0)e
−ǫ1(t−t0)

and T (t) ≤ T (t0)e
−p(t−t0).

Therefore for t ≥ t0,
Ra

Ra + b5T a
≥ R(t0)

a

R(t0)a + b5T (t0)ae−(p−ǫ1)(t−t0)
→ 1 as t → ∞.

So L → ∞ as t → ∞. This is a contradiction.

Similarly for L ≥ (b4/b6) indefinitely T ≥ T̃ , where T̃ = T (0) > 0 is a strictly
positive constant, R → 0 and L → 0. Again this is a contradiction. Hence L enters
the region ((b1/b2)

1

a , (b4/b6)) infinitely often.

If L ≈ L̂ indefinitely:

T (t) ≈ T0e

(

b6L̂−b4

)

t → 0 as t → ∞.

After a sufficiently large time t1,

R(t) ≈ R(t1) exp

[(

b1

L̂a
− b2

)

(t − t1)

]

→ 0 as t → ∞,

T (t) ≈ T (t1)e

(

b6L̂−b4

)

(t−t1),

and
dL

dt
≈

(

c1R(t1)
a

R(t1)a + b5T (t1)a
− c2

)

L.

Moreover if L ≥ L̂ + ǫ2 indefinitely for some ǫ2 > 0:
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T ≥ T0e

(

b6(L̂+ǫ2)−b4

)

t

and R ≤ R0 exp

[(

b1

(L̂ + ǫ2)a
− b2

)

t

]

.

Hence
T a

Ra
≥ T a

0

Ra
0

eaft, for some f > 0.

Therefore
1

1 + b5

(

T a

Ra

) ≤ 1

1 + b5
T a

0

Ra
0

eaft

→ 0, as t → ∞.

So L tends to zero as t → ∞. This is a contradiction. We deduce that L∞ ≤ L̂.

Similarly if L ≤ L̂ − ǫ3 indefinitely for some ǫ3 > 0,

T ≤ T0e

(

b6(L̂−ǫ3)−b4

)

t.

Hence there exists t2 such that for t ≥ t2, T ≤ (ǫ3/2b3). For t ≥ t2,

T ≤ T (t2)e

(

b6(L̂−ǫ3)−b4

)

(t−t2),

and R ≥ R(t2) exp

[(

b1
(

L̂ − 1
2 ǫ3
)a − b2

)

(t − t2)

]

.

We deduce that
T (t)a

R(t)a
≤ T (t2)

a

R(t2)a
e−ga(t−t2), for some g > 0.

Therefore
1

1 + b5
T (t)a

R(t)a

≥ 1

1 + b5
T (t2)

a

R(t2)a
e−ga(t−t2)

→ 1, as t → ∞.

So L tends to infinity. This is a contradiction so L∞ ≥ L̂. It is tempting to
conjecture that L → L̂ as t → ∞.

Note that if L ≈ L̂ and Ra/(Ra + b5T
a) < (c2/c1) then L decreases, so after a

delay the rate of exponential decrease of T becomes larger. Also the rate of expo-
nential decrease of R becomes smaller. Hence Ra/(Ra+b5T

a) increases. Conversely

if L ≈ L̂ and Ra/(Ra + b5T
a) > (c2/c1) then L increases, so after a delay the rate

of exponential decrease of T becomes smaller. Also the rate of exponential decrease
of R becomes larger. Hence Ra/(Ra + b5T

a) decreases. Therefore although this is
only a heuristic argument it suggests that Ra/(Ra + b5T

a) may approach (c2/c1)
as t becomes large. In this situation it is plausible that L remains constant and T
and R exponentially decrease at the same rate, which in some sense corresponds
to the possible equilibrium E2 of Theorem 1 being globally stable. This is a topic
which we explore further by simulation in the next section.
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6. Simulations

We aim to conduct simulations using realistic parameter values to see whether
our model can predict the regular oscillations observed in levels of LHRH, LH and
testosterone in the bloodstream. The clearance rates of the three hormones are
estimated by Keenan and Veldhuis (1998) as b2 = 0.23 - 0.69/min, c2 = 0.0087 -
0.014/min and b4 = 0.046/min so we take b2 = 0.5/min, c2 = 0.01/min and b4 =
0.046/min. Keenan et al. (1998) suggest from data that the elimination of LH may
follow a biexponential form, but also discuss a single exponential rate. We assume
a simple exponential rate for simplicity. We take b3 = 0.001 and b5 = 0.001 as trial
and error shows that these give sensible results. We took a = 1 for simplicity as
this is the simplest case illustrating the qualitative features of our model.

Plausible equilibrium levels of LH in the bloodstream after evening out the pul-
satile variations are approximately 5 IU/l (Urban et al. 1988, Berne and Levy, 1993
and Keenan et al. 1998). Direct measurement of LHRH levels in the bloodstream
are difficult to find but simulations by Keenan et al. (2000) suggest a plausible equi-
librium level of 1 pg/ml. These simulations together with data in Berne and Levy
(1993) suggest plausible equilibrium levels of testosterone of 600 ng/dl. Assuming
these equilibrium levels we use the equilibrium equations to give b1 = 2.8/min, b6

= 0.0092/min and c1 = 0.016/min.
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Figure 1. Regular oscillations of LHRH, LH and T in the bloodstream.
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Numerical calculation, using a program written in FORTRAN and comprehen-
sively verified using detailed output from a large number of runs shows that we
expect the first three bifurcation points to be at τ1 = 58.76 minutes, τ2 = 122.45
minutes and τ3 = 228.47 minutes. In the region where τ ∈ [0, τ1) the positive
equilibrium was locally unstable and L, R and T exhibited oscillations of increasing
amplitude. In the region τ ∈ (τ1, τ2) the system converged to a stable equilibrium
and in the region τ ∈ (τ2, τ3) convergence to stable limit cycle behaviour occurred.

We used the computer package SOLVER to numerically integrate the differential
equations. Figure 1 shows simulated cycles of LHRH, LH and T in the bloodstream,
in the stable limit cycle region where τ = 130 minutes. The initial conditions for
these simulations were R(0) = 1 pg/ml, T (0) = 500 ng/dl and L(u) = 5 IU/l for
−τ ≤ u ≤ 0. The oscillations are qualitatively similiar to observed and other
simulated hormone fluctuation levels (Berne and Levy, 1993, Keenan and Veldhuis,
1998). In particular the LHRH oscillations are much sharper than the oscillations
in the levels of the other hormones. The frequency of testosterone fluctuations at
10 pulses/day also agrees well with observed data (Keener and Sneyd, 1998).

We also investigated computationally our heuristic discussion of the behaviour
when c1 > c2 and b2b

a
4 > b1b

a
6 . We observed three sorts of behaviour which seemed

to correspond to (i) L converges to L̂ and R and T decrease exponentially to zero,
(ii) L exhibits stable limit cycle behaviour and R and T decrease to zero and (iii)
L, R and T exhibit increasing oscillations and the solutions terminate because R
becomes extremely large. For simulations where the first type of behaviour occurred
our conjectures in Section 7 were clearly true in the sense that L converged to L̂,
Ra/(Ra + b5T

a) approached (c2/c1) and L and T both decreased exponentially at

rate b6L̂ − b4 < 0. For simulations where the second type of behaviour occurred
the hormone L showed limit cycle behaviour, Ra/(Ra + b5T

a) approached (c2/c1)
in an oscillatory fashion and both R and T decreased exponentially (although still

with oscillations) at long term exponential rate approximately b6L̂ − b4.
The convergence of Ra/(Ra + b5T

a) and exponential decrease of R and T were
sharper and clearer in the situations where L converged to a stable value, but
occurred in both the cases (i) and (ii) above. Simulations were performed with
a wide range of parameter values and initial conditions and in each case one of
these three types of behaviour occurred, although cases (i) and (ii) appeared more
common than case (iii).

As an illustrative example where L converged to a stable value we consider
simulations with the same parameters as in Figure 1 but with b3 reduced to 0.0
and b6 reduced to 0.0046/min. The conditions c1 > c2 and b2b

a
4 > b1b

a
6 are clearly

satisfied. The initial values were R(0) = 1 pg/ml, T (0) = 600.0 ng/dl and L(u)
= 5.7 IU/l for −τ ≤ u ≤ 0. The results are shown in Figure 2. LH ultimately

tends to L̂ = 5.8238 IU/l and R and T ultimately decrease exponentially at rate

b6L̂ − b4 = −0.01921/min.

7. Summary and Discussion

In this paper we have discussed a delay-differential equation model to explain the
cyclic release of three hormones in the body: the hypothalamic hormone LHRH,
pituitary hormone LH and testosterone. We postulated a new delay-differential
equation model which improves on previous modelling efforts by taking into account
the fact that LHRH encourages the production of LH which in turn encourages the
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Figure 2. LH tends to a constant level, exponential decline of LHRH and T.

production of testosterone. We also took into account a time delay between stimu-
lation of the testis by LH and the rise in testosterone level in the bloodstream. In
our model we found that there was a unique equilibrium with all three hormones
present. This was unstable when the time delay was zero and as the time delay
τ increases passing through a progressively increasing infinite series of values Hopf
bifurcation occurs repeatedly. We then briefly discussed the likely stability proper-
ties of the other equilibria. Simulations with realistic parameter values illustrated
qualitatively similar patterns of cyclic hormone fluctuations as reported in the lit-
erature from biological observations and other simulations. In regions of instability
the hormone levels either exhibited limit cycles or increasing oscillatory patterns
about the unique equilibrium with all three hormones present. For other parame-
ter values LH either tended to a constant level or oscillated about a constant level,
whilst LHRH and testosterone ultimately decreased exponentially to zero.

As with any other mathematical model our results are dependent on the mod-
elling assumptions and it is difficult to be sure about all of these. There is clearly
a lot of stochasticity in the observed levels of hormones in the bloodstream which
our model does not capture. Also other models have proposed stochastic pulsatile
secretion of LHRH and LH (but not testosterone) and used stochastic differential
equations to model this. The model incorporated a stochastic pulsing mechanism
with a 24 hour circadian rythm (Keenan and Veldhuis, 1998, Keenan et al. 1998).
Most of the evidence for pulsatile secretion is indirect as it is difficult to directly
measure secretion of these hormones in man. Also these models use different func-
tional forms for the differential equations (involving combinations of univariate and
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bivariate logistic functions) and are much more complex than our relatively simple
models. Models of this type can explain some data well (Keenan and Veldhuis,
1998, Keenan et al. 1998) but have also been criticised by Cartwright and Husain
(1986) who claim that this type of model does not describe the inhibitory effect of
gonadal steroids on the LHRH pulse generator and leads to other inconsistencies
with the observed biological data.

Our results complement these more complex simulations. Even if the release
of LHRH and LH is actually pulsatile, the fact that simulations of relatively sim-
ple approximate deterministic models also closely qualitatively resemble observed
fluctuations in hormone data driven via limit cycle fluctuations provides an alter-
native underlying mechanism re-inforcing the cyclic behaviour, in parallel with the
pulsatile release.
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