Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff

Giles, Michael B. and Higham, Desmond J. and Mao, Xuerong (2009) Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff. Finance and Stochastics, 13 (3). pp. 403-413. ISSN 0949-2984

[img]
Preview
PDF (180_FinanSto_Mao.pdf)
180_FinanSto_Mao.pdf

Download (120kB) | Preview

Abstract

Giles (Multilevel Monte Carlo path simulation Operations Research, 2008; 56:607-617) introduced a multi-level Monte Carlo method for approximating the expected value of a function of a stochastic differential equation solution. A key application is to compute the expected payff of a financial option. This new method improves on the computational complexity of standard Monte Carlo. Giles analysed globally Lipschitz payoffs, but also found good performance in practice for non-globally Lipschitz cases. In this work, we show that the multi-level Monte Carlo method can be rigorously justifed for non-globally Lipschitz payoffs. In particular, we consider digital, lookback and barrier options. This requires non-standard strong convergence analysis of the Euler-Maruyama method.