Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff

Giles, Michael B. and Higham, Desmond J. and Mao, Xuerong (2009) Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff. Finance and Stochastics, 13 (3). pp. 403-413. ISSN 0949-2984

PDF (180_FinanSto_Mao.pdf)

Download (120kB) | Preview


Giles (Multilevel Monte Carlo path simulation Operations Research, 2008; 56:607-617) introduced a multi-level Monte Carlo method for approximating the expected value of a function of a stochastic differential equation solution. A key application is to compute the expected payff of a financial option. This new method improves on the computational complexity of standard Monte Carlo. Giles analysed globally Lipschitz payoffs, but also found good performance in practice for non-globally Lipschitz cases. In this work, we show that the multi-level Monte Carlo method can be rigorously justifed for non-globally Lipschitz payoffs. In particular, we consider digital, lookback and barrier options. This requires non-standard strong convergence analysis of the Euler-Maruyama method.