Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Ohmic contact formation to bulk and heterostructure gallium nitride family semiconductors

Rahman, F. and Xu, S. and Watson, I.M. and Mutha, D.K.B. and Oxland, R.K. and Johnson, N.P. and Bannerjee, A. and Wasige, E. (2009) Ohmic contact formation to bulk and heterostructure gallium nitride family semiconductors. Applied Physics A: Materials Science and Processing, 94 (3). pp. 633-639. ISSN 0947-8396

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We describe experiments investigating the quality of ohmic contacts to both bulk GaN and to III-nitride heterostructures. Titanium-based contacts were investigated to assess the role of intermixing and surface impurities for contact formation to n-type GaN. Direct contact to the two-dimensional electron gas in GaN/AlGaN heterostructures was also studied. These contacts were made by photochemical etching of the samples to expose the heterointerface. It was observed that even in the latter case contact annealing leads to a lower contact resistance by consuming surface contaminants and promoting beneficial interfacial reactions. Various passivation techniques were tried to reduce surface leakage current between contact pads and PECVD-deposited silicon nitride was found to be the best material for this application.