Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Integration by self-aligned writing of nanocrystal/epoxy composites on InGaN micropixelated light-emitting diodes

Guilhabert, B.J.E. and Elfstrom, D. and Kuehne, A.J. and Massoubre, D. and Zhang, H.X. and Jin, S.R. and Mackintosh, A.R. and Gu, E. and Pethrick, R.A. and Dawson, M.D. (2008) Integration by self-aligned writing of nanocrystal/epoxy composites on InGaN micropixelated light-emitting diodes. Optics Express, 16. p. 18933. ISSN 1094-4087

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We report on the integration of monodisperse semiconductor nanocrystal (NC) color converters onto gallium nitride ultraviolet micropixelated light-emitting diodes ('micro-LEDs'). Integration is achieved in a 'self-aligned' process by forming a nanocomposite of the respective NCs in a photocurable epoxy polymer. Blue, green, yellow and red NC/epoxy blend microstructures have been successfully integrated onto micro-pixelated LEDs by this technique and utilised for color conversion, resulting in a five color emission single chip. Optical output power density of up to about 166mW/cm2 is measured; spectral emission at 609nm gives an estimated optical-to-optical conversion as high as 18.2% at 30mA driving current.