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Abstract: 

The use of composite laminate materials has increased rapidly in recent years due to their excellent 

strength to weight ratio and resistance to corrosion.  In the construction of marine vessels, stiffened plates 

are the most commonly used structural elements, forming the deck, bottom hull, side shells and bulkheads.  

This paper presents the use of a stochastic approach to the design of stiffened marine composite panels as 

part of a current research programme into developing stochastic methods for composite ship structures, 

accounting for variations in material properties, geometric indices and processing techniques, from the 

component level to the full system level.  An analytical model for the solution of a stiffened isotropic plate 

using a grillage analogy is extended by the use of equivalent elastic properties for composite modelling.  

This methodology is applied in a reliability analysis of an isotropic (steel) stiffened plate before the final 

application for a reliability analysis for a FRP composite stiffened plate. 
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Introduction 

There is increasing interest in the use of lightweight, polymer composite structures for a variety of 

applications in underwater structures. These applications are in the form of single skin stiffened structures 

as well as monocoque single skin and sandwich configurations. The structures could potentially be made 

up using different fibre types, fibre architectures and weaves, resins, core materials; there could be further 

variations owing to volume fractions and geometric/topological layouts. Also, there is further choice in 

processing routes as well. One could consider the use of low temperature cure prepregs or alternatively 

consider vacuum assisted resin infusion moulding. These processes too have many in-built variabilities. 

Current trends in marine (ship/boat) design use conservative safety indices based mainly on some limiting 

strain value. 

This approach however does have drawbacks. The limiting strain value (usually an in-plane strain) 

may not pick up the load transfer mechanism adequately and hence may not model dominant failure 

modes adequately. Currently little or no allowance is made for variabilities in design parameters, 

processing parameters and topological indices. 



One solution to this problem is to integrate well established reliability techniques with composite 

structure design.  There are various established techniques to carry out reliability analysis such as first or 

second order reliability methods (FORM or SORM) or simulation (e.g. Monte Carlo) and depending on 

the type of problem, one or the other methods can be applied. One of the difficult problems in composites 

will be to define the failure surface for various limit states and also the uncertainties of different design 

variables involved in the definition of the limit states. Surmounting these issues will reduce the level of 

uncertainty in adopting composites as a construction material and widen the engineer�s choice of design 

solutions. 

There is a significant use of stiffened plating or panels in ship structures.  The accurate solution for 

the mechanical response of these stiffened panels subject to loading is not trivial.  However, to avoid 

conservativeness in design and easing the introduction of new construction materials, the use of 

probabilistic methods requires a structural model with high levels of confidence.  The challenge is to 

identify an analytical or numerical technique that can meet the compromise between accuracy and speed 

required in reliability analyses. 

In a ship structure, beams and girders are the stiffening members for the plating: girders and beams 

are usually placed longitudinally and transversely respectively, forming a mesh which intersects 

orthogonally (Figure 1).  The network of these girders and beams is called a �grillage�, defined by 

Clarkson ( 1965), whereby the plating between the stiffeners is considered as an effective flange (stiffener 

base plate) between the girders and beams.  In this way, the analysis is reduced to that of an unplated 

grillage where the mechanical response can be obtained using Euler-Bernoulli beam theory, either through 

the use of a Displacement Method (DM) or a Force Method (FM) (Wunderlich & Pilkey 2003) or 

approximate methods such as the Orthotropic Plate (OPM) or the Energy method (EM) (Vedeler 1945).  

Folded Plate methods (FPM) can also be used to solve the mechanical response a stiffened panel or the 

use of a numerical Finite Element Analysis (FEA). 

The displacement method (Clarkson 1965) is the most common method used for grillage analysis 

and it relies on the analysis of the straight segments of the girders and beams between the intersection 



points and defines the deflection and slopes at the intersection points.  Research applications have 

considered both static and dynamic problems (Balendra & Shanmugam 1985;Cheung, Bakht, & Jaeger 

1982;Evan H.R. et al. 1983;Tan & Montage 1991). 

For the force method, at every intersection point of the grillage the condition of equilibrium is 

satisfied for applied load.  The deflection is calculated by using beam theory where reaction force is 

determined.  Lazarides ( 1952) introduced the calculation procedure of the FM to a square grillage by 

ignoring the torsion of beams.  This calculation procedure used by Clarkson ( 1963) provided solutions 

which agreed well with experimental data. 

Since the number of equations increases when the number of intersections increases, finding the 

mechanical solutions of a grillage having a large number of beams requires solution by computer when 

either the FM or DM is being utilised. Smith ( 1964) developed a computer program to analyse grillages 

with up to 100 intersections where two axes of symmetry were present.  More recently, Jang et al. ( 1996) 

employed the FM by ignoring torsional rigidity of girders and beams within their optimisation of a surface 

effect ship built from aluminium.  The complex structures due to longitudinal girder and transverse web 

frames were represented as a number of grillages. 

Figure 1.(a)Tophat cross stiffened plate 

(b)unplated grillage representation for the 

stiffened plate (Maneepan 2007) 



 

In the context of a probabilistic analysis of stiffened panels, a large number of simulations may be 

required where each simulation represents an alternative combination of stiffened panel variables. To 

avoid solving a large number of equations therefore, approximate methods for the mechanical response of 

a stiffened panel is advantageous. 

A number of researchers have utilised one approximating analytical technique, the orthotropic 

plate method, for a number of applications (Hosseini-Toudeshky, Ovesy, & Kharazi 2005;Krisek, Evan, & 

Ahmad 1990;Mikami & Niwa 1996;Mikami & Yonezawa 1983).  OPM converts the stiffened plate into 

an equivalent plate with constant thickness by smearing out the stiffeners but is limited in accuracy by the 

spacing and number of stiffeners considered (Bedair 1997). 

An alternative approximating technique was developed by Vedeler ( 1945) in the 1940�s who 

simplified the solution to the grillage problem by using Navier's energy method (EM) in which the 

deflection of the grillage is determined by equating the total strain energy of all the beams to work done 

by the normal load so that only one equation needed to be solved for deflection at every intersection. 

Other alternative techniques for the analysis of stiffened panels can be found in the folded plate 

method (FPM) and finite element analysis (FEA), which is likely to be the most effective means of getting 

accurate results.  Both methods are based on discrete models of an array of beams and plate elements. The 

continuity conditions are defined along the interconnecting boundary between the plates and beams.  The 

accuracy of the FPM is limited to structures consisting of flat rectangular panels simply supported at one 

pair of opposite sides and stiffened in one direction only (for orthogonally stiffened plates, the transverse 

stiffeners are smeared out by adding the stiffness properties into the plate element).  The practical 

application of FPM can be seen in the Canadian bridge design code (CHBDC 2000) which restricts the use 

of this method to bridges with support conditions closely equivalent to line supports at both ends of the 

bridge. 



The time consumed in the solution for both the FPM and FEA is too high to allow the practical use 

of these approaches in probabilistic analysis due to the number of equilibrium equations that require 

solution. 

Subsequently the analysis of a stiffened plate will be performed based on the grillage model 

assumption over the OPM or FPM. The energy method (EM) is considered in this analysis for the grillage 

solution. This can be rapidly employed to evaluate the reliability without building the FE models. 

For the application of anisotropic FRP composite materials, Smith ( 1990) showed that the grillage 

analysis for stiffened panels made from isotropic materials could be utilised by consideration of composite 

beam theory under the assumption that a plane section on the panel was to remain plane when subjected to 

bending moments and Poisson's ratio effect was considered negligible. 

In summary, the probabilistic analysis of a composite stiffened panel will be undertaken on the 

basis of a structural model that reduces the problem to that of an energy method solution of an analogous 

grillage. 

Grillage analysis for a Composite Stiffened Plate 

The analysis of a grillage based on Navier's Energy Method found in Vedeler ( 1945), originally 

developed for a structure built of isotropic material, is adapted for composite plated grillages by 

substituting equivalent elastic properties of a symmetric laminate into the grillage analysis.  Consider the 

grillage (see Figure 1) consisting of b equally spaced beams in the length (L) direction and g equally 

spaced girders in the width (B) direction. 



Figure 2(a)Tophat cross-section of girders & 

beams, describing i elements, with local 

coordinate system for fibre layup (b)Geometric 

parameters of girders and (c)Geometric 

parameters of beams (Maneepan 2007) 
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To represent the tophat cross stiffened plates, the girders and beams of the grillage have a tophat 

shape including the base plate, or effective flange, (see Figure 2).  Since the structures are made of 

laminated composite, the tophat, or box, cross section could be comprised of many elements, for example 

the base plate, vertical webs and the horizontal top crown, having different elastic properties (the core is 

neglected as it is usually non-structural). 

To avoid the section coupling problem between membrane and bending action, the geometry of the 

cross section must be symmetric.  Each laminated element is assumed to be symmetric about its own plane 

and specially orthotropic in the membrane mode to eliminate the effect of the coupling terms.  From 

Datoo ( 1991), the membrane equivalent Young's modulus value of a laminate in the axial direction of the 

i
th

 element (Ei) can be found by,  
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The extension stiffness [A] of the element is expressed as:  
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For ij = 11, 12 and 22, the expression of ijQ , the transformed reduced stiffness of the k
th

 layer, are 

as follows: 
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c and s are abbreviations for cosθ and sinθ and θ is the fibre angle in each ply.  The reduced stiffness 

terms Qij where ij = 1, 2 and 6 are expressed as:  
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If the girders and beams consist of Ng and Nb elements respectively, the flexural rigidity of the 

girder (Dg) and beam (Db) can be written as: 
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Eg(i) and Eb(i) are membrane equivalent Young's moduli in the axial direction of i
th

 element of the girders 

and beams respectively.  Ig(i) and Ib(i) are the second moment of area of the ith element relative to the 

Neutral Axis  (NA) of the girder�s and beam's cross sections respectively.  The general form of Ig(i) and 

Ib(i) can be presented by I(i) as follows using the standard parallel axis theorem, where a(i) is the area of the 

i
th

 element and dNA(i) is the distance from the NA of the i
th

 element:  
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The deflection, w(x,y), at any point of the grillage is expressed by the following double summation 

of trigonometric series according to Navier's energy method (Bedair 1997): 
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m and n are wave numbers and amn are coefficients which can be determined by the condition that the 

change in potential energy due to the assumed deflections is a minimum.  The potential energy, or strain 

energy, V, in a deflected grillage can be written as: 

g bV V V W= + −   (8) 

Vg and Vb are the strain energies in the girders and beams respectively and W is the work done by an 

external load, P.  For minimum potential energy, 
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The deflection curve of the q
th

 beam is obtained by giving x the constant value,  

( )
,

1
q

qL
x

b
=

+
  (10) 

such that, 

1 1

where( ) sin    sin
( 1)qx x qn qn mn

n m

n y m q
w y b b a

B b

π π∞ ∞

=
= =

= =
+

∑ ∑   (11) 

Similarly, the deflection curve of the p
th

 girder is obtained by giving y the constant value, 
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The strain energy for all the girders and beams can now be represented as: 
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Meanwhile, the work done, W, by the application of a uniform pressure load, P, is: 
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Therefore, 
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where m and n are odd numbers (integration of even numbered sine functions equals zero).  Now the 

coefficient amn can be obtained as, 
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Hence, the complete expression for the deflection of the tophat stiffened plate can be found by 

substituting Equation (18) into a double sine series in Equation (7).  The bending moment and shear force, 

respectively, of the p
th

 girder can be obtained by, 
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The direct stress in the axial direction and shear stress at each element on the girder cross section 

are given by the following expressions, 
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where Zg is the distance from the neutral axis of the girder to the i
th

 element and s is the distance around 

the cross-section from the middle of the crown element to a point where the shear value is of interest.  

Similar to Equations (19) and (20), the direct stress (σb) and shear stress (τb) of the beam can be obtained 

by relevant substitutions. 

Validation 

The grillage analysis procedure for the response of a composite stiffened panel to uniform pressure 

loading with simple supports has been detailed in the previous section �Grillage analysis for a Composite 

Stiffened Plate�.  Using this same procedure but with the simplification of isotropic material properties for 



which known solutions exist a validation (Clarkson 1965;Maneepan 2007;Nayak et al. 2006) can be made, 

likewise a comparison with results obtained from finite element analysis (Maneepan 2007).  Extending the 

EM approach for FRP composites by the use of equivalent elastic properties (equations (1-6)) is trivial. 

From four examples presented in Clarkson ( 1965), the grillages chosen for validatory purposes 

represent a rectangular and a square panel stiffened by either I-sections or box sections in the following 

arrangement: 

• four equal & evenly spaced girders & five equal and evenly spaced transverse beams for rectangular 

panel (4x5) 

• four equal & evenly spaced girders & transverse beams for square panel (4x4) 

 

The dimensions of the stiffeners for both panels are given in Table 1 and the panel dimensions in 

Table 2. 

Table 1 Girder & beam dimensions 

4x5 4x4 

I or Box 
I or 

Box 
Dimension 

Girder Beam

Girder 

or 

Beam 

Height (mm) 254 69.85 254 

Width (mm) 127 44.45 127 

Crown thickness (mm) 18.288 9.525 18.288 

Web thicknesses (mm) 9.144 5.08 9.144 

Flange thickness (mm) 18.288 9.525 18.288 

 

The 4x4 panel is subjected to 137.895kPa and the 4x5 panel to 34.474kPa (see Table 2).  The 

apparent accuracy to which the design parameters are specified is due to the nature of converting from 

Imperial units of measurement to metric. 

Table 3 compares the results of DM (Clarkson 1965), EM (Vedeler 1945) and FEA (Maneepan 

2007) for maximum deflection and stress. For the grillage constructed using I-beams, the prescribed EM 

results have good agreement with results obtained from FEA (using 4-node, 6 degree of freedom per node, 

SHELL63 elements).  For the box stiffened plate, the maximum stress in the longitudinal and transverse 

beams differ by up to 20.3%. The assumption that the effects of shear deflections and torsional rigidity of 



the beams are sufficiently small to be neglected is not realistic as in this case the longitudinal and 

transverse members have widely differing stiffness. 

The extension to an anisotropic composite material requires the definition of the equivalent 

Young�s modulus in the rigidity definitions, equations (5).  Comparing the membrane equivalent Young�s 

modulus with that determined by Datoo ( 1991) shows that the present work is in exact agreement 

(Maneepan 2007). 

 

 

 

 

 

 

(a) 4x4 grillage (b) 4x5 grillage 

Figure 1 Grillage geometry and positions of displacement and stress calculations 

Grillage displacement calculation position 

Grillage stress calculation position for girder 

Grillage stress calculation position for beam

Grillage displacement and stress calculation 

position 

 

 

Table 2. Statistics of random variables for steel grillages (* value used for stress limit state) 
Mean Value 

4x4 4x5 Random Variable COV (%) Distribution
I Box I Box 

L (length) (mm) 3 Normal 3810 3810 6096 6096 

B (breadth) (mm) 3 Normal 3810 3810 2540 2540 

Ig (Inertia, girder) (mm4) 3 Normal 72.48x106 80.31x106 72.48x106 80.31x106

Ib (Inertia, beam) (mm4) 3 Normal 72.48x106 80.31x106 0.8323x106 0.8878x106

E (Young�s modulus) (GPa) 2,3,4,5 Normal 207 207 207 207 

σY (Yield stress) (MPa) 8 Lognormal 245 245 245 245 

P (load) (kPa) 10,15*,20,25,30 Weibull 137.895 137.895 34.474 34.474 

 

 

 

 

 



Table 3. Comparison between results for DM, EM and the FEA for maximum deflection, įmax , 

and stress, ıg
 and ıb

 for girder and beam respectively. 

Displacement method 

(Clarkson 1965) 
Grillage 

structure 

Beam 

Type 
Solution 

Torsion 

included 

Shear and 

torsion 

neglected 

Energy Method 

(Vedeler 1945) 

(Shear and torsion 

neglected) 

FEA  

(Maneepan 2007) 

Error  between 

Energy Method and 

FEA(%FEA) 

įmax(mm) 10.95 10.95 11.55 11.51 0.35 
I 

ımax(MPa) 183.17 183.32 196.12 189.42 3.54 

įmax (mm) 9.296 9.63 10.42 9.83 6.0 
4x4 

Box 
ımax(MPa) 160.16 165.56 176.91 157.48 12.3 

įmax(mm) 20.32 20.40 21.96 20.47 7.28 

ıg
max(MPa) 137.15 137.92 142.85 135.10 5.7 I 

ıb
max(MPa) 206.64 205.41 208.17 209.81 -0.78 

įmax(mm) 16.84 18.34 19.93 17.306 6.65 

ıg
max(MPa) 108.57 125.41 129.58 107.72 20.3 

4x5 

Box 

ıb
max(MPa) 238.15 184.71 189.17 235.14 -19.6 

 

Reliability Analysis 

Following the successful analytical approach for representing the mechanical response of an isotropic 

stiffened panel and extending the approach for anisotropic material by the use of equivalent elastic 

properties, a reliability analysis can be undertaken with confidence. 

The reliability of a structure is defined as the probability that the structure will perform its intended 

function without failing.  Defining a performance function, or limit state function, g(x), as the difference 

between structural �capacity� and �demand� then: 

• g(x) > 0 then the structure is safe. 

• g(x) < 0 then the structure has failed. 

• g(x) = 0 defines the failure limit state between survivability and failure 

 

In this paper the reliability is given as the probability that the calculated stiffened panel 

deformations and stresses are less than the permissible values: a stiffness limit state and a strength limit 

state. 

The reliability index or safety index is effectively a measure of how far inside the �safe� zone the 

structure is operating � approaching a zero value, the probability that a structure will fail approaches 

100%. 



The importance that each random variable has on the overall grillage response can be examined by 

the evaluation of the sensitivity index, α.  The larger the sensitivity index, the more influential the 

particular random variable is on the overall limit state function. 

For the following cases, all probabilistic computations are carried out with the computer program 

CALREL using first order and second order reliability methods (FORM/SORM) (Liu, Lin, & Der 

Kiureghian 2008). 

Reliability of stiffened steel plate 

Deflection Limit State 

The deflection limit state function is defined as follows: 

max
( ) ( , , , , , )

g b
g x k w w L B I I E P= × −  (21) 

where wmax is the maximum displacement at any of the locations represented in Figure 3 using the mean 

values of the design parameters, Table 3.  k is an arbitrary factor - it is taken as 2 in this problem. L and B 

are the length and width of the grillage structure; Ig and Ib are the second moment of area of the girder and 

beam respectively; E is Young�s modulus for steel; P is a uniformly distributed load. 

Figure 3. Influence of COV of load, P and Young�s Modulus, E on reliability index, β.

 



Figure 3 shows the effect of increasing uncertainty in the quantity of load uniformly distributed 

across the stiffened plate has an almost linear reduction in the reliability of the plate�s deflection over the 

specified range.  This is not an unsurprising result given the sensitivity of the load quantity on the 

deflection limit state function (Table 4). 

 

Table 4.Deflection limit state sensitivity indices 

Sensitivity Index, α 

4x4 4x5 Variable 

I or Box I or Box 

L 0.4741 0.6248 

B 0.4741 0.2808 

Ig 0.1018 0.1631 

Ib 0.1018 0.0327 

E 0.2063 0.1972 

P 0.698 0.6814 

 

From Table 4, the largest contributions to the reliability of either plates is from load and the plate 

size but for both aspect ratio plates the sensitivity of the Young�s modulus on the deflection limit state of 

the stiffeners cannot be ignored.  With increasing uncertainty in the value of Young�s modulus, the 

reliability of stiffened plates with regards limiting deflection can be seen in Figure 3. Increasing the 

uncertainty in the Young�s modulus for the steel from 2% to 5% leads to a reduction in reliability index of 

0.25.  For both panels this equates to over a threefold increase in the probability of failure. 

Stress limit state  

A reliability analysis is undertaken assuming the distributions described in Table 3. The COV for load, P, 

is taken as 15%.  The yield stress is defined as being represented by a lognormal distribution. 

The stress limit state equation g(x) is defined as, 

( ) ( , , , , )
y g b

g x L B I Iσ σ= − P  (22) 

where ıg and ıb are the maximum stresses of the girder and beam respectively, calculated by the grillage 

analysis. The calculate reliability index and probability of failures are given in Table 5.  Stiffening with 

box beams for either aspect ratio plate leads to a much higher plate reliability in terms of limiting the 

maximum perceived stress. 



 

Table 5. Stress reliability 

Grillage 
Stiffener 

type 
 

Reliability 

Index 

Probability 

of failure 

Beam 0.8359 2.016×10
-1

I  
Girder 3.6051 1.560×10

-4

Beam 1.3785 8.402×10
-24×5 

Box  
Girder 4.3604 6.492×10

-6

I  

Beam 

or 

Girder

1.4753 7.006×10
-2

4×4 

Box  

Beam 

or 

Girder

2.1535 1.564×10
-2

 

Sensitivity analyses showed that the relative importance of the variables is almost identical 

between the two beam types. For brevity therefore, sensitivity factors are given only for I-beam types in 

Table 6. 

Table 6. Stress limit state sensitivity indices 

Sensitivity Index, α 

4x4 4x5 
Variable 

Beam & 

Girder 
Beam Girder 

L 0.4762 0.5993 0.3414 

B 0.0922 0.1312 0.3293 

Ig 0.1501 0.1993 

Ib

0.1944 
0.0094 0.0366 

σY 0.5133 0.4231 0.6165 

P 0.6808 0.6496 0.5949 

 

For the 4x4 grillage sensitivities shown in Table 6, the largest effect on the stress limit state comes 

from the uncertainty in the applied load but also the effects of the uncertainty in yield stress and panel 

aspect ratio are significant. 

Reliability of a Composite Stiffened Panel 

The grillage chosen for investigation is the 4x4 panel with box or tophat stiffening. The structure measures 

3810mm square and is simply supported at all edges (cf. Figure 3a). The longitudinal girder and transverse 

beam dimensions are given in Table 1.  A uniform pressure of 137kPa is applied on the grillage structure.  



Reliability analyses is performed using the (mean) material properties of the resin and fibre listed in Table 

7. 

Table 7. Material properties of resin & fibre 

  Epoxy 
HM 

Carbon 

Young�s modulus, E (GPa) 3 826 

Poisson�s ratio, ν 0.37 - 

Shear modulus, G (GPa) 1.09 413 

Tensile strength (MPa) 85 2200 

Tensile failure strain (%) 5 0.3 

Compressive strength (MPa) 130 - 

 

Elastic properties for a unidirectional layer should be established ideally by tests, however, for 

initial design purposes, it may be obtained by several approximations to the elastic constants with 

reasonable accuracy (Nayak, Das, Blake, & Shenoi 2006). 

Deflection limit state 

The deflection limit state function is defined below as a function of the random variables, 

max( ) ( , , , , , , , )f m f m fg x k w w L B P E E G G V= × −   (23) 

where wmax is the maximum displacement using the mean values of the design parameters. k is a safety 

factor and is equal to 2 in this problem.  The reliability analysis is performed with the following statistics 

of the design variables given in Table 8.  The results for the reliability index and probability of failure are 

listed in Table 10.   

Table 8. Statistics for random variable for composite 

grillage (deflection limit state) 

Random Variable Distribution
Mean 

Value 

C.O.V 

% 

L (Length) Normal 3810mm 3 

B (Width) Normal 3810mm 3 

P (pressure) Weibull 137kPa 15 

Ef (fibre) Normal 826GPa 3 

Em (resin) Normal 3.0GPa 3 

Gf (fibre) Normal 413GPa 3 

Gm (resin) Normal 1.09GPa 3 

Vf (fibre volume fraction) Normal 0.6 3 

İf
*
(Tensile failure strain %) Normal 0.3 3 

 

 

 



Table 9. Reliability of composite grillage  

Method 
Reliability 

Index, β 

Probability of 

Failure,  Pf (×10
-6

) 

FORM 4.6927 1.348 

SORM 4.7446 1.045 

 

From Table 9, the inclusion of second order terms in the linearization of the limit state equation (SORM) 

has only a marginal consequence on the predicted reliability compared to the consideration of only the 

first order terms (FORM).  The predicted reliability of the composite grillage is 1 in approximately 

740000 grillages would be expected to fail the deflection limit state.  Comparing with those determined 

from Figure 3 suggests that the equivalent steel plate is marginally more reliable with 1 in approximately 

770000 grillages expected to fail. 

The dominant variables in the limit state equation on the reliability of the composite grillage can 

be seen in Figure 4. 

 

Figure 4. Sensitivity factors 4x4 box stiffened 

composite grillage 

 

The effect of uncertainty in the stiffened composite plate dimensions, L and B and load, P, have 

quite sizeable contributions to the probability of the deflection limit state being exceeded which cannot be 

ignored.  It is also noticed that Young�s modulus and fibre volume fraction also have an important 

contribution on the deflection limit state.  Unrepresented in this figure are the sensitivities for the Young�s 

modulus of resin Em and Gf and Gm, the shear modulus of the fibre and the resin, which play such small 

roles in contributing to the probability of failure that they can be treated as deterministic constants. 



It is interesting to compare these results with the results for an equivalent steel grillage, Table 4.  

The Young�s modulus for the fibre and the fibre volume fraction provide a measure of the laminate 

stiffness which is analogous to the Young�s modulus for steel for the isotropic grillage example.  Indeed 

the uncertainty of the Young�s modulus for the isotropic example has a significant influence on the 

deflection limit state.  However from Table 4, it is also clear that the moments of inertia of the girders and 

beams have an influence that should not be neglected statistically, whereas their uncertainty with regards 

the composite grillage can be ignored and the dimensional accuracy of the stiffeners is assumed to be 

assured (Ig and Ib are deterministic constants). 

Stress limit state  

Using maximum stress criteria, the crown of the composite structure is assessed with regards its 

failure.  The stress limit state function is therefore,  

*

max( ) ( , , , ) ( , , , , , , , )t f m f f f m f m fg x X E E V L B P E E G G Vε σ= −    (34) 

in which Xt is the ultimate tensile strength determined by the mean values of its dependent variables and 

σmax is the maximum stress in the crown.  The reliability analysis is performed with the statistics for the 

design variables described in Table 8. The results for the reliability index are very large, over 20 in value, 

which is equivalent to a probability of failure equal to zero - the �demand� contribution to the stress limit 

state function is far removed from the grillage �capacity� and in fact the average maximum stress level in 

the grillage crown is 175MPa whereas the average maximum tensile strength of the crown is an order 

higher at 1470MPa.  It appears that in comparison to the steel grillage example, the composite grillage is 

effectively �infinitely� more reliable when the limit state is maximum stress. 

The sensitivity of the limit state function on the random variables is shown in Figure 5 where only 

the dominant variables are shown.  Any uncertainty in the true value of the tensile failure strain 

significantly affects the stress limit state equation.  The stress is also dependent on the fibre volume 

fraction and the Young�s modulus for the fibre.   Most importantly though is the variation in the length 

dimension of the panel.  Young�s modulus of resin Em and shear modulus of fibre and resin, Gf and Gm, 



unrepresented in Figure 5, again play a small role in the reliability analysis and as such can be treated as 

deterministic constants. 

 

Figure 5. Sensitivity factors 4x4 box stiffened 

composite grillage 

Conclusions 

Using a grillage analogy for a stiffened plate, a structural model has been generated, validated against 

known solutions for steel grillages, and extended using equivalent elastic properties for laminates to 

consider anisotropy.    From limited data for composite stiffened plate analyses, there is confidence in the 

approach but it is anticipated that future experimental tests will be required for improvements to be made 

to the structural model. 

Reliability analyses have been performed on the isotropic steel grillage and on the anisotropic 

composite grillage, providing reliability indices and corresponding probabilities of failure can therefore be 

determined for the two limit states presented in this paper of deflection and stress. The importance of the 

random variables in the prediction of reliability can be determined through investigation of the sensitivity 

indices and it is apparent that load is important.  Load typically is considered a subjective uncertainty as 

often the phenomenological behaviour, such as wave loads, is not wholly understood.  Accumulating good 

qualitative data is important to forming target structural reliability and therefore efficient design. 

From analyses of the composite grillage, one benefit of reliability methods can be readily seen.  

Composite design, manufacture and processing have many random variables that can be considered to 

affect the structural performance of the finished product.  The subsequent operation of that product can 

induce cracking, water ingress, durability issues, material failure and so on, each of which is influenced by 



the very nature of the composite material itself.  Using reliability analyses can identify which random 

variables are more influential on the resulting performance.  In terms of manufacture or repair this may 

have the more obvious advantage of allowing the engineer to concentrate on these more important areas � 

for example, geometry, fibre angle as cloths are stacked, process technique to maximise fibre volume 

fraction and so forth.  With the methods presented in this paper, further developments are now possible.  

Acknowledgements 

This work has been undertaken with the support of the UK MoD Sea Systems Group (Bath), BMT and the European network 

activity, MarSTRUCT. 

 

 

 

 

 

 

References 

 

Balendra, T. & Shanmugam, N. E. 1985, "Free vibration of plated structures by grillage method", Journal 

of sound and vibration, vol. 99, no. 3, pp. 333-350. 

Bedair, O. K. 1997, "Analysis of stiffened plates under lateral loading using sequential quadratic 

programming (SQP)", Computer & Structures, vol. 62, no. 63, p. 80. 

Cheung, M. S., Bakht, B., & Jaeger, L. G. 1982, "Analysis of box girder bridges by grillage and 

orthotropic plate methods", Canadian Journal of Civil Engineering, vol. 9, no. 4, pp. 595-601. 

Clarkson, J. 1963, "Test of flat plated grillages under uniform pressure", Transactions of RINA, vol. 105. 

Clarkson, J. 1965, The elastic analysis of flat grillages Cambridge University Press, Cambridge. 

Datoo, M. H. 1991, Mechanics of fibrous composites Elsevier science publishers Ltd., Essex, England. 

Evan H.R., Alinia, M. M., Labanti, P., & Shanmugam, N. E. 1983, "Theoretical investigation of the 

collapse of multi-cellular structures under lateral loading", Journal of constructional steel research, vol. 3, 

no. 2, pp. 23-30. 

Hosseini-Toudeshky, H., Ovesy, H. R., & Kharazi, M. 2005, "The development of an approximate method 

for the design of base-stiffened composite panels", Thin-walled structures, vol. 43, no. 11, pp. 1663-1676. 

Jang, C. D., Seo, S. I., & Kim, S. K. 1996, "A study on the optimum structural design of surface effect 

ships", Marine Structures, vol. 9, pp. 519-544. 

Krisek, V., Evan, H. R., & Ahmad, M. K. M. 1990, "Shear lag analysis for composite box girders", 

Journal of constructional steel research, vol. 16, no. 1, pp. 1-21. 

Lazarides, T. O. 1952, "The design and analysis of openwork prestressed concrete beam grillages", Civil 

Engineering, vol. 47, no. 552. 



Liu, P.-L., Lin, H.-Z., & Der Kiureghian, A. 2008, CALREL User Manual, UCB/SEMM-1989/18 edn, 

Dept. of Civil Engineering, University of California, Berkeley. 

Maneepan, K. 2007, Genetic algorithm based optimisation of FRP composite plates in ship structures, 

Doctor of Philosophy, University of Southampton. 

Mikami, I. & Niwa, K. 1996, "Ultimate compressive strength of orthogonally stiffened steel plate", 

Journal of structural engineering, vol. 122, no. 6, pp. 674-682. 

Mikami, I. & Yonezawa, H. 1983, Inelastic buckling of plate girders with transverse stiffeners under 

bending 24. 

Nayak, A., Das, P., Blake, J. I. R., & Shenoi, R. A. 2006, Safe Design of a Composite Structure - A 

Stochastic Approach (Phase I), University of Southampton. 

Ontario Ministry of transportation and communications 2000, Canadian highway bridge design code 

(CHBDC) Downsview, Ontario, Canada. 

Smith, C. S. 1964, "Analysis of grillage structures by the force method", Transactions of RINA, vol. 106. 

Smith, C. S. 1990, Design of marine structures in composite materials Elsevier applied science, London. 

Tan, K. H. & Montage, P. 1991, "Simple grillage analogy for the analysis of steel sandwich panels with 

penetrations", Structural engineer, vol. 69, no. 15, pp. 271-276. 

Vedeler, G. 1945, Grillage beams in ships and similar structures Grondahl & Son, Oslo. 

Wunderlich, W. & Pilkey, W. D. 2003, Mechanics of Structures: Variational & Computational Methods 

CRC Press. 

 

 


	Introduction
	Grillage analysis for a Composite Stiffened Plate
	Validation
	Reliability Analysis
	Reliability of stiffened steel plate
	Deflection Limit State
	Stress limit state

	Reliability of a Composite Stiffened Panel
	Deflection limit state
	Stress limit state


	Conclusions



