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Abstract

This is a continuation of our paper [16] on stochastic population dynamics under

regime switching (J. Math. Anal. Appl. 334 (2007), 69–84). In this paper we still take

both white and color environmental noise into account. We show that a sufficient large

white noise may make the underlying population extinct while for a relatively small noise

we give both asymptotically upper and lower bound for the underlying population. In

some special but important situations we precisely describe the limit of the average in

time of the population.
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1 Introduction

Population systems are often subject to environmental noise and there are various types of

environmental noise e.g. white or color noise (see e.g. [2, 6, 8, 21, 24]) and it has been
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shown that the presence of such noise affects population systems significantly. For example,

Takeuchi et. al. [26] consider a predator-prey Lotka–Volterra model with Markovian switching

between two regimes of environment. Although the predator-prey Lotka–Volterra model in

each regime (without switching) develops periodically ([9, 25]), Takeuchi et. al. [26] reveal

a very interesting and surprising result: switching between two regimes makes the system

become neither permanent nor dissipative. However, the situation changes if the white noise

is taken into account. In our previous paper [16], we show that under both telegraph and white

noise, the general Lotka–Volterra model will not explode to infinity or become extinct at any

finite time with probability one. Moreover, the model is not only stochastically ultimately

bounded but the time-average of the second moment is also bounded. These nice properties

indicate that taking both telegraph and white noise into account produces more desired results.

It is in this spirit that we will consider both telegraph and white noise in this paper as well.

However, the type of white noise considered here is different from that in our pervious paper

[16].

To explain, let us consider the Lotka–Volterra model under regime switching for a system

with n interacting components, namely

ẋ(t) = diag(x1(t), . . . , xn(t))[b(r(t)) + A(r(t))x(t)], (1.1)

where r(t) is a Markov chain on the state space S as defined in the next section, x =

(x1, . . . , xn)T and for each i ∈ S,

b(i) = (b1(i), . . . , bn(i))T , A(i) = (ajk(i))n×n.

Recall that the parameter bj(i) represents the intrinsic growth rate of species j in regime i. In

practice we usually estimate it by an average value plus an error term. If we still use bj(i) to

denote the average growth rate, then the intrinsic growth rate becomes bj(i) + errorj(i). Let

us consider a small subsequent time interval dt, during which xj(t) changes to xj(t) + dxj(t).

Accordingly, equation (1.1) becomes

dxj(t) = xj(t)
(
bj(r(t)) +

n∑
k=1

ajk(r(t))xk(t)
)
dt+ xj(t) errorj(r(t)) dt (1.2)

for 1 ≤ j ≤ n. According to the well-known central limit theorem, the error term errorj(i) dt

may be approximated by a normal distribution with mean zero and variance v2
j (i)dt. In terms

of mathematics, errorj(i) dt ∼ N(0, v2
j (i)dt), which can be written as errorj(i) dt ∼ vj(i)dB(t),
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where dB(t) = B(t+ dt)− B(t) is the increment of a Brownian motion (to be defined in the

next section) that follows N(0, dt). Hence equation (1.2) becomes the Itô stochastic differential

equation (SDE)

dxj(t) = xj(t)
[(
bj(r(t)) +

n∑
k=1

ajk(r(t))xk(t)
)
dt+ vj(r(t))dB(t)

]
for 1 ≤ j ≤ n. That is, in the matrix form,

dx(t) = diag(x1(t), · · · , xn(t))
(

[b(r(t)) + A(r(t))x(t)]dt+ v(r(t))dB(t)
)
, (1.3)

where v(i) = (v1(i), · · · , vn(i))T is the vector of the standard deviations of the errors, known

as the noise intensities. These intensities may or may not depend on population sizes. If they

are dependent on population sizes, we may have

vj(i) =
n∑
k=1

σjk(i)xk(t)

and hence equation (1.2) becomes

dx(t) = diag(x1(t), · · · , xd(t))
(

[b(r(t)) + A(r(t))x(t)]dt+ σ(r(t))x(t)dB(t)
)
,

where σ(i) = (σjk(i))n×n. This is the stochastic Lotka–Volterra model which we have discussed

in our previous paper [16].

However, if the noise intensities are independent of population sizes, we can write v(i)

as a constant vector σ(i) = (σ1(i), · · · , σn(i))T . As a result, equation (1.2) becomes an SDE

under regime switching of the form

dx(t) = diag(x1(t), . . . , xn(t))
(

[b(r(t)) + A(r(t))x(t)]dt+ σ(r(t))dB(t)
)
, (1.4)

and this is the model which we will discuss in this paper. As this is a population system, our

natural aims of this paper are:

• to establish a sufficient condition on A(i) only under which the solution of equation (1.4)

starting from anywhere in Rn
+ will remain in Rn

+ with probability one;

• to show that the solution is ultimately bounded inmean and the average in time of the

variance of the solution is bounded too;

• to reveal that a large white noise will force the population to become extinct;

• to give upper and lower bound for the solution under a relatively small white noise and,

in some special but important cases, to describe limt→∞
1
t

∫ t
0
x(s)ds precisely.
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2 Stochastic Lotka–Volterra Model under Regime

Switching

Throughout this paper, unless otherwise specified, we let (Ω,F , {Ft}t≥0,P) be a complete

probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is increasing

and right continuous while F0 contains all P-null sets). Let B(t), t ≥ 0 be a scalar Brownian

motion defined on this probability space. Let r(t), t ≥ 0, be a right-continuous Markov

chain on the probability space taking values in a finite state space S = {1, 2, . . . , N} with the

generator Γ = (γij)N×N given by

P{r(t+ δ) = j|r(t) = i} =

 γijδ + o(δ) if i 6= j,

1 + γiiδ + o(δ) if i = j,

where δ > 0. Here γij is the transition rate from i to j and γij > 0 if i 6= j while

γii = −
∑
j 6=i

γij.

We assume that the Markov chain r(·) is independent of the Brownian motion B(·). We also

fix the initial value r(0) = i0 ∈ S arbitrarily so the Markov chain is fixed too. It is well known

that almost every sample path of r(·) is a right continuous step function with a finite number

of sample jumps in any finite subinterval of R+ := [0,∞).

We will need a few more notations. If A is a vector or matrix, its transpose is denoted

by AT . If A is a matrix, its trace norm is denoted by |A| =
√

trace(ATA) whilst its operator

norm is denoted by ‖A‖ = sup{|Ax| : |x| = 1}. We also introduce the positive corn Rn
+ =

{x ∈ Rn : xi > 0 for all 1 ≤ i ≤ n}. Please note the difference between R1
+ = (0,∞) and

R+ = [0,∞).

In this paper we will use a lot of quadratic functions of the form xTAx for the state

x ∈ Rn
+ only. Therefore, for a symmetric n × n matrix A = (ajk)n×n, we recall the following

definition

λ+
max(A) = sup

x∈Rn
+,|x|=1

xTAx,

which was introduced by Bahar and Mao [2]. Let us emphasise that this is different from the

largest eigenvalue λmax(A) of the matrix A. To see this more clearly, let us recall the nice

property of the largest eigenvalue:

λmax(A) = sup
x∈Rn,|x|=1

xTAx.
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It is therefore clear that we always have

λ+
max(A) ≤ λmax(A).

In many situations we even have λ+
max(A) < λmax(A). For example, for

A =

 −1 −1

−1 −1

 ,
we have λ+

max(A) = −1 < λmax(A) = 0. On the other hand, λ+
max(A) does have many similar

properties as λmax(A) has. For example, it follows straightforward from the definition that

xTAx ≤ λ+
max(A)|x|2 ∀x ∈ Rn

+

and

λ+
max(A) ≤ ‖A‖.

Moreover

λ+
max(A+ C) ≤ λ+

max(A) + λ+
max(C)

if C is another symmetric n× n matrix. For more properties of λ+
max(A) please see [2, 22].

As the mth state xm(t) of equation (1.4) is the size of the mth component in the system,

it should be nonnegative. Moreover, the coefficients of equation (1.4) do not satisfy the linear

growth condition, though they are locally Lipschitz continuous, so the solution of equation

(1.4) may explode to infinity at a finite time. It is therefore useful to establish some conditions

under which the solution of equation (1.4) is not only positive but will also not explode to

infinity at any finite time.

Theorem 2.1 Assume that there are positive numbers c1(i), . . . , cn(i), i ∈ S such that

λ+
max

(
C(i)A(i) + AT (i)C(i)

)
≤ 0, (2.1)

where C(i) = diag(c1(i), . . . , cn(i)). Then for any system parameters b(·), σ(·), and any given

initial value x0 ∈ Rn
+, there is a unique solution x(t) to equation (1.4) on t ≥ 0 and the

solution will remain in Rn
+ with probability one, namely x(t) ∈ Rn

+ for all t ≥ 0 almost surely.

Proof. Since the coefficients of the equation are locally Lipschitz continuous, it is known (see

e.g. [16, Theorem A.2]) that for any given initial value x0 ∈ Rn
+ there is a unique maximal
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local solution x(t) on t ∈ [0, τe), where τe is the explosion time. To show this solution is global,

we need to show that τe = ∞ a.s. Let k0 > 0 be sufficiently large for every component of x0

lying within the interval [1/k0, k0]. For each integer k ≥ k0, define the stopping time

τk = inf{t ∈ [0, τe) : xm(t) 6∈ (1/k, k) for some m = 1, . . . , n},

where throughout this paper we set inf ∅ = ∞ (as usual, ∅ = the empty set). Clearly, τk is

increasing as k →∞. Set τ∞ = limk→∞ τk, whence τ∞ ≤ τe a.s. If we can show that τ∞ =∞

a.s., then τe =∞ a.s. and x(t) ∈ Rn
+ a.s. for all t ≥ 0. In other words, to complete the proof

all we need to show is that τ∞ = ∞ a.s. For if this statement is false, then there is a pair of

constants T > 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ T} > ε.

Hence there is an integer k1 ≥ k0 such that

P{τk ≤ T} ≥ ε for all k ≥ k1. (2.2)

Define a function V : Rn
+ × S→ R+ by

V (x, i) =
n∑

m=1

cm(i)
[
xm − 1− log(xm)

]
.

By the generalized Itô formula (see e.g. [22, p.48] or [23, p.104]), we have, for any t ∈ [0, T ],

EV (x(t ∧ τk), r(t ∧ τk)) = V (x0, i0) + E
∫ t∧τk

0

LV (x(s), r(s))ds. (2.3)

Here LV is a mapping from Rn
+ × S to R defined by

LV (x, i) = xTC(i)b(i) +
1

2
xT [C(i)A(i) + AT (i)C(i)]x

− C̄(i)(b(i) + A(i)x) +
1

2
σT (i)C(i)σ(i) +

N∑
j=1

γijV (x, j), (2.4)

where C̄(i) = (c1(i), . . . , cn(i)). By condition (2.1), it is easy to see that there is a constant

K1 such that

LV (x, i) ≤ K1(1 + |x|) +
N∑
j=1

γijV (x, j). (2.5)

Let

K2 = max

{
cm(i)

cm(j)
: 1 ≤ m ≤ n and i, j ∈ S

}
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and

K3 = min{cm(i) : 1 ≤ m ≤ n, i ∈ S}.

Then, by the definition of V , for any i, j ∈ S, we have

K2V (x, i) =
n∑

m=1

K2cm(i)[xm − 1− log(xm)] ≥
n∑

m=1

cm(j)[xm − 1− log(xm)] = V (x, j)

and

|x| ≤
n∑

m=1

xm ≤
n∑

m=1

[2(xm − 1− log(xm)) + 2]

≤ 2n+
2

K3

n∑
m=1

cm(i)(xm − 1− log(xm))

= 2n+
2

K3

V (x, i).

Hence there is a constant K4 > 0 such that

LV (x, i) ≤ K4(1 + V (x, i)). (2.6)

It then follows from (2.3) that

EV (x(t ∧ τk), r(t ∧ τk)) ≤ V (x0, i0) + E
∫ t∧τk

0

K4(1 + V (x(s), r(s))ds

≤ K5 +K4

∫ t

0

EV (x(s ∧ τk), r(s ∧ τk))ds, (2.7)

where K5 = V (x0, i0) +K4T . The Gronwall inequality yields that

EV (x(T ∧ τk), r(T ∧ τk)) ≤ K6 := K5e
K4T . (2.8)

From here we can show that τ∞ = ∞ almost surely in the same way as in the proof of [16,

Theorem 2.2].

3 Ultimate Boundedness

Theorem 2.1 shows that under condition 2.1 the solutions of equation (1.4) will remain in

the positive cone Rn
+. These properties of positivity and non-explosion are essential for a

population system. On the other hand, due to the limit of resource, the property of ulti-

mate boundedness is more desired. To be precise, let us now give the definition of ultimate

boundedness.

7



Definition 3.1 Equation (1.4) is said to be ultimately bounded in mean if there is a positive

constant H such that for any initial value x0 ∈ Rn
+, the solution x(t) of equation (1.4) has the

property that

lim sup
t→∞

E|x(t)| ≤ H. (3.1)

The following theorem shows that a little bit stronger condition than (2.1) guarantees the

ultimate boundedness in mean.

Theorem 3.2 If condition (2.1) is strengthened by

−λ := max
i∈S

λ+
max

(
C(i)A(i) + AT (i)C(i)

)
< 0, (3.2)

then equation (1.4) is ultimately bounded in mean.

Proof. By Theorem 2.1, the unique solution x(t) will remain in Rn
+ for all t ≥ 0 with probability

1. Define

V (x, t, i) = etC̄(i)x, (x, t, i) ∈ Rn
+ × R+× ∈ S.

where C̄(i) = (c1(i), . . . , cn(i)). For each integer k ≥ |x0|, define the stopping time

ρk = inf{t ∈ R+ : |x(t)| ≥ k}.

By the generalized Itô formula, we have, for any t ≥ 0,

EV (x(t ∧ ρk), t ∧ ρk, r(t ∧ ρk)) = V (x0, 0, i0) + E
∫ t∧ρk

0

LV (x(s), s, r(s))ds, (3.3)

where LV is a mapping from Rn
+ × R+ × S to R defined by

LV (x, t, i) = V (x, t, i) + et
(
xTC(i)b(i) + xTC(i)A(i)x

)
+

N∑
j=1

γijV (x, t, j). (3.4)

By condition (3.2),

xTC(i)A(i)x =
1

2
xT [C(i)A(i) + AT (i)C(i)]x ≤ −λ|x|2.

Therefore

LV (x, t, i) ≤et
(
[ |C̄(i)|+ |C(i)b(i)|+ γi ] |x| − λ|x|2

)
≤ K7e

t,

where γi =
∑

j 6=i γij|C̄(j)| and and

K7 = max
i∈S

1

4λ
[ |C̄(i)|+ |C(i)b(i)|+ γi ]

2. (3.5)
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It then follows from (3.3) that

EV (x(t ∧ ρk), t ∧ ρk, r(t ∧ ρk)) ≤ V (x0, 0, i0) +K7e
t.

Letting k →∞ gives

EV (x(t), t, r(t)) ≤ V (x0, 0, i0) +K7e
t.

Noting that

|x(t)| ≤ V (x(t), t, r(t))

K3eαt
,

where K3 has been defined in the proof of Theorem 2.1, we obtain

lim sup
t→∞

E|x(t)| ≤ K7

K3

,

which means equation (1.4) is ultimately bounded in mean.

Theorem 3.3 Under condition (3.2), there is a positive constant H̄ such that for any initial

value x0 ∈ Rn
+, the solution x(t) of equation (1.4) has the property that

lim sup
t→∞

1

t

∫ t

0

E|x(s)|2ds ≤ H̄. (3.6)

Proof. We use the same notations as in the proof of Theorem 3.2. Applying the generalized

Itô formula to C̄(r(t))x(t), we can show in the same way as there that

0 ≤ C(r0)x0 + E
∫ t∧ρk

0

(
[ |C(r(s))b(r(s))|+ γr(s) ] |x(s)| − λ|x(s)|2

)
ds (3.7)

≤ C(r0)x0 +K8t−
λ

2
E
∫ t∧ρk

0

|x(s)|2ds,

where

K8 = max
i∈S

1

2λ
[ |C(i)b(i)|+ γi ]

2. (3.8)

Hence
λ

2
E
∫ t∧ρk

0

|x(s)|2ds ≤ C(r0)x0 +K8t.

Letting k →∞ and then dividing both sides by λt/2, letting t→∞, we obtain

lim sup
t→∞

1

t
E
∫ t

0

|x(s)|2ds ≤ 2K8

λ
.

Finally, by the well-known Fubini theorem, we get assertion (3.6) with H̄ = 2K8/λ.

Theorem 3.3 shows that the average in time of the second moment, hence the variance,

of the solutions will be bounded.
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4 Extinction

In this section we will discuss another important issue in the study of population dynamics,

namely the problem of extinction. As pointed out in Section 1, Takeuchi et. al. [26] has

recently revealed a very interesting and surprising result: The telegraph telegraph may make

a population system become neither permanent nor dissipative. We will in this section reveal

another important fact: the white noise may make a population system become extinct with

probability one. For this purpose, we impose a new assumption in this section.

Assumption 4.1 The Markov chain r(·) is irreducible.

This is a very reasonable assumption as it means that the system will switch from any

regime to any other regime. It is known (see e.g. [1]) that the irreducibility implies that the

Markov chain has a unique stationary (probability) distribution π = (π1, π2, . . . , πN) ∈ R1×N

which can be determined by solving the following linear equation

πΓ = 0 (4.1)

subject to
N∑
i=1

πi = 1 and πi > 0 ∀i ∈ S.

Theorem 4.2 Let Assumption 4.1 hold. Assume that there are positive numbers c1, . . . , cn

such that

λ+
max(CA(i) + AT (i)C) ≤ 0, ∀i ∈ S, (4.2)

where C = diag(c1, . . . , cn). Then for any initial value x0 ∈ R+
n , the solution x(t) of equation

(1.4) has the property that

lim sup
t→∞

1

t
log(|x(t)|) ≤ 1

2

∑
i∈S

πiλ
+
max(Q(i)) a.s. (4.3)

where Q(i) = b(i)~1 +~1T b(i)− σ(i)σT (i) for i ∈ S with ~1 = (1, . . . , 1). In particular, if∑
i∈S

πiλ
+
max(Q(i)) < 0, (4.4)

then the population will become extinct exponentially with probability one.
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Proof. By Theorem 2.1, the solution x(t) will remain in Rn
+ for all t ∈ R+ with probability

one. Let C̄ = (c1, . . . , cn) and define

V (x) = C̄x =
n∑
i=1

cixi for x ∈ Rn
+. (4.5)

By the Itô formula, we have

d[log(V (x(t)))] =
1

V (x(t))
xT (t)C

(
[b(r(t)) + A(r(t))x(t)]dt+ σ(r(t))dB(t)

)
− 1

2V 2(x(t))
|xT (t)Cσ(r(t))|2dt. (4.6)

But, by condition (4.2),

xT (t)CA(r(t))x(t) ≤ 0,

while

1

V (x(t))
xT (t)Cb(r(t))− 1

2V 2(x(t))
|xT (t)Cσ(r(t))|2

=
1

2V 2(x(t))

[
2xT (t)Cb(r(t))Cx(t)− xT (t)Cσ(r(t))σT (r(t))Cx(t)

]
=

1

2V 2(x(t))

[
2xT (t)Cb(r(t))~1Cx(t)− xT (t)Cσ(r(t))σT (r(t))Cx(t)

]
=

1

2V 2(x(t))
xT (t)CQ(r(t))Cx(t)

≤ 1
2
λ+

max(Q(r(t))).

Substituting these into (4.6) yields

d[log(V (x(t)))] ≤ 1
2
λ+

max(Q(r(t)))dt+
xT (t)Cβ

V (x(t))
dB(t). (4.7)

This implies

log(V (x(t))) ≤ log(V (x0) + 1
2

∫ t

0

λ+
max(Q(r(s)))ds+M(t), (4.8)

where M(t) is a martingale defined by

M(t) =

∫ t

0

xT (s)Cσ(r(s))

V (x(s))
dB(s).

It is easy to show by the strong law of large numbers for martingales (see e.g. [19, Theorem

1.3.4 on page 12]) that

lim
t→∞

M(t)

t
= 0 a.s.
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Dividing t on the both sides of (4.8), letting t → ∞ and then applying the ergodic property

of the Markov chain, we obtain

lim sup
t→∞

1

t
log(V (x(t))) ≤ 1

2
lim
t→∞

1

t

∫ t

0

λ+
max(Q(r(s)))ds = 1

2

∑
i∈S

πiλ
+
max(Q(i)) a.s.

which yields the required assertion (4.3) immediately.

The following corollary shows that if the noise intensities are sufficiently large, then (4.4)

will hold whence the population will become extinct with probability one.

Corollary 4.3 Under Assumption 4.1 and condition 4.2, if moreover the noise intensities are

strong enough in the sense that for each i ∈ S,

σj(i)σk(i) > bj(i) + bk(i), 1 ≤ j, k ≤ n, (4.9)

then the population system (1.4) will become extinct exponentially with probability one.

Proof. For each i ∈ S, the jk-th element of the matrix Q(i) defined in Theorem 4.2 is

bj(i) + bk(i)− σj(i)σk(i),

which is negative by condition (4.9). It is then easy to show that

λ+
max(Q(i)) = − min

1≤j≤n

[
σ2
j (i)− 2bj(i)

]
< 0,

whence (4.4) holds and the assertion follows from Theorem 4.2.

The above corollary requires that condition (4.9) hold for every i, but this is unnecessary.

The following example illustrates this point clearly.

Example 4.4 To make it simple, we classify the environment of a population system for 2

interacting species as ”good” and ”bad” seasons. Assume that in the good season, the envi-

ronmental noise has little effect on the system so we can describe the system by a deterministic

Lotka–Volterra model

ẋ(t) = diag(x1(t), x2(t))[b(1) + A(1)x(t)], (4.10)

where b(1) = (b1(1), b2(1))T and A(1) = (ajk(1))2×2. Assume that the system parameters obey

b1(1), b2(1) > 0; a11(1), a22(1) < 0; a12(1), a21(1) > 0; 4a11(1)a22(1) ≥ (a12(1) + a21(1))2.
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It is therefore well-known (see e.g. [10, 11, 12]) that the population system (4.10) is persistent.

On the other hand, in the bad season, the environmental noise has a significant effect on the

system so we describe the system by a stochastic Lotka–Volterra model

dx(t) = diag(x1(t), x2(t))
(
[b(2) + A(2)x(t)]dt+ σ(2)dB(t)

)
, (4.11)

where b(2) = (b1(2), b2(2))T , A(2) = (ajk(2))2×2 and σ(2) = (σ1(2), σ2(2))T . Assume that the

system parameters obey

b1(2), b2(2) > 0; a11(2), a22(2) < 0; a12(2), a21(2) > 0; 4a11(2)a22(2) ≥ (a12(2) + a21(2))2

and

σ2
1(2) > 2b1(2); σ2

2(2) > 2b2(2); σ1(2)σ2(2) > b1(2) + b2(2).

Assume furthermore that the switching between two seasons is governed by a Markovian chain

r(t) on the state space S = {1, 2} with the generator

Γ =

−γ12 γ12

γ21 −γ21

 ,

where states 1 and 2 stand for the good and bad season, respectively, while γ12 > 0 and γ21 > 0.

Hence the system with the Markovian switching between two seasons can be described by

dx(t) = diag(x1(t), x2(t))
(
[b(r(t)) + A(r(t))x(t)]dt+ σ(r(t))dB(t)

)
, (4.12)

where we set σ(0) = (0, 0)T . It is easy to see that the Markov chain has its stationary

probability distribution π = (π1, π2) given by

π1 =
γ21

γ12 + γ21

and π2 =
γ12

γ12 + γ21

.

To apply Theorem 4.2, we let C be the 2× 2 identity matrix. By the conditions listed above,

it is easy to see

λ+
max(CA(i) + AT (i)C) ≤ λmax(A(i) + AT (i)) ≤ 0, i = 1, 2.

It is also easy to show that Q(i)’s defined in Theorem 4.2 obey

λ+
max(Q(1)) = 2[b1(1) ∨ b2(1)] and λ+

max(Q(2)) = −[σ2
1(2)− 2b1(2)] ∧ [σ2

2(2)− 2b2(2)].

Hence, by Theorem 4.2, the solution of equation (4.12) has the property

lim sup
t→∞

1

t
log(|x(t)|) ≤ π1[b1(1) ∨ b2(1)]− π2

2
[σ2

1(2)− 2b1(2)] ∧ [σ2
2(2)− 2b2(2)] a.s.
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We can therefore conclude that if

λ21

λ12

<
[σ2

1(2)− 2b1(2)] ∧ [σ2
2(2)− 2b2(2)]

2[b1(1) ∨ b2(1)]
,

then the population system (4.12) will become extinct with probability one.

5 Small Noise

We have shown in the previous section that a strong environmental noise could make the

population system become extinct. The interesting question is: what happens if the noise

is not so strong? In this section we will discuss the asymptotic properties of the solution of

equation (1.4) when the noise is relatively small. Let us begin with the following theorem.

Theorem 5.1 Assume that condition (4.2) holds. Assume also that for each i ∈ S,

b̂(i) := min
1≤m≤n

bm(i) >
1

2
max

1≤m≤n
σ2
m(i) :=

1

2
σ̌2(i). (5.1)

Then for any given initial value x(0) ∈ Rn
+, the solution x(t) of equation (1.4) has the property

that

lim inf
t→∞

log(|x(t)|)
log t

≥ −max
i∈S

( σ̌(i)2

2b̂(i)− σ̌2(i)

)
a.s. (5.2)

Proof. The proof is very technical so we divide it into three steps.

Step 1. By Theorem 2.1, the solution x(t) will remain in Rn
+ for all t ≥ 0 with probability

one. Let V (x) be the same as defined by (4.5). Define

y(t) =
1

V (x(t))
and z(t) = 1 + y(t) on on t ≥ 0.

We claim that for any θ obeying

0 < θ < min
i∈S

( 2b̂(i)

σ̌2(i)
− 1

)
, (5.3)

there is a positive constant K = K(θ) such that

lim sup
t→∞

E[zθ(t)] ≤ K. (5.4)

To show this, we compute, by the Itô formula,

dV (x(t)) = xTC[b(r(t)) + A(r(t))x(t)]dt+ xT (t)Cσ(r(t))dB(t); (5.5)

14



and then

dy(t) = −y2(t)dV (x(t)) + y3(t)[xT (t)C(σ(r(t))]2dt

=
(
− y2(t)xTC[b(r(t)) + A(r(t))x(t)] + y3(t)[xT (t)Cσ(r(t))]2

)
dt

− y2(t)xT (t)Cσ(r(t))dB(t); (5.6)

and furthermore

dzθ(t) = θzθ−1(t)dy(t)− 1
2
θ(1− θ)zθ−2(t)y4(t)[xT (t)Cσ(r(t))]2dt

= θzθ−2(t)
(
z(t)

{
− y2(t)xTC[b(r(t)) + A(r(t))x(t)] + y3(t)[xT (t)Cσ(r(t))]2

}
−1

2
(1− θ)y4(t)[xT (t)Cσ(r(t))]2

)
dt

− θzθ−1(t)y2(t)xT (t)Cσ(r(t))dB(t). (5.7)

Dropping t from x(t) etc. we compute that

z
{
− y2xTC[b(r) + A(r)x] + y3[xTCσ(r)]2

}
− 1

2
(1− θ)y4[xTCσ(r)]2

= −y2xTCb(r)− y2xTCA(r)x− y3xTCb(r)− y3xTCA(r)x

+y3[xTCσ(r)]2 + 1
2
(1 + θ)y4[xTCσ(r)]2

≤ −x
TCA(r)x

V 2(x)
+

(xTCσ(r))2 − xTCA(r)x

V 2(x)
y

−
( xTCb(r)

V (x)
− 1

2
(1 + θ)

(xTCσ(r))2

V 2(x)

)
y2.

It is easy to see that for all (x, r) ∈ Rn
+ × S,

−x
TCA(r)x

V 2(x)
≤ K1 and

xTCA(r)x+ (xTCσ(r))2

V 2(x)
≤ K1,

where K1 is a positive constant, while

xTCb(r)

V (x)
≥ b̂(r) and

(xTCσ(r))2

V 2(x)
≤ σ̌2(r).

Hence

z
{
− y2xTC[b(r) + A(r)x] + y3[xTCσ(r)]2

}
− 1

2
(1− θ)y4[xTCσ(r)]2

≤ K1(1 + y)− [b̂(r)− 1
2
(1 + θ)σ̌2(r)]y2.

Substituting this into (5.7) yields

dzθ(t) ≤ θzθ−2(t)
(
K1(1 + y(t))− [b̂(r(t))− 1

2
(1 + θ)σ̌2(r(t))]y2(t)

)
dt

− θzθ−1(t)y2(t)xT (t)Cσ(r(t))dB(t). (5.8)
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Now, choose ε > 0 sufficiently small for

ε

θ
< min

i∈S
[b̂(i)− 1

2
(1 + θ)σ̌2(i)]. (5.9)

Then, by the Itô formula,

d[eεtzθ(t)] = eεt[εzθ(t)dt+ dzθ(t)]

≤ θεεtzθ−2(t)
(ε
θ

(1 + y(t))2 +K1(1 + y(t))− [b̂− 1
2
(1 + θ)σ̌2]y2(t)

)
dt

− εεtθzθ−1(t)y2(t)xT (t)Cσ(r(t))dB(t).

It is easy to see that there is a constant K2 such that

θ(1 + y)θ−2
(ε
θ

(1 + y)2 +K1(1 + y)− [b̂(r)− 1
2
(1 + θ)σ̌2(r)]y2

)
≤ K2 (5.10)

for all (y, r) ∈ R+ × S. Thus

d[eεtzθ(t)] ≤ K2ε
εtdt− εεtθzθ−1(t)y2(t)xT (t)Cσ(r(t))dB(t).

This implies

E[eεtzθ(t)] ≤ zθ(0) +
K2

ε
εεt,

and (5.4) follows by setting K = K2/ε.

Step 2. Using (5.10), we observe from (5.8) that

dzθ(t) ≤ K2dt− θzθ−1(t)y2(t)xT (t)Cσ(r(t))dB(t).

This implies that

E
(

sup
t≤u≤t+1

zθ(u)
)

≤ E[zθ(t)] +K2 + E
(

sup
t≤u≤t+1

∣∣∣ ∫ u

t

θzθ−1(s)y2(s)xT (s)Cσ(r(s))dB(s)
∣∣∣). (5.11)

But, by the well-known Burkholder–Davis–Gundy inequality (see e.g. [22, p.76]), we compute

E
(

sup
t≤u≤t+1

∣∣∣ ∫ u

t

θzθ−1(r)y2(s)xT (s)Cσ(r(s))dB(s)
∣∣∣)

≤ 3θE
(∫ t+1

t

z2θ−2(s)y4(s)(xT (s)Cσ(r(s))2ds
)1

2

≤ 3θE
(∫ t+1

t

z2θ(s)
(xT (s)Cσ(r(s))2

V 2(x(s))
ds
)1

2

≤ 3θσ̌E
([

sup
t≤s≤t+1

zθ(s)
] ∫ t+1

t

zθ(s)ds
)1

2

≤ 1
2
E
[

sup
t≤s≤t+1

zθ(s)
]

+
9θ2σ̌2

2
E
∫ t+1

t

zθ(s)ds,
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where σ̂2 = maxi∈S σ̌
2(i). Substituting this into (5.11) gives

E
(

sup
t≤u≤t+1

zθ(u)
)
≤ 2E[zθ(t)] + 2K2 + 9θ2σ̌2

∫ t+1

t

Ezθ(s)ds.

Letting t→∞ and using (5.4) we obtain that

lim sup
t→∞

E
(

sup
t≤u≤t+1

zθ(u)
)
≤ 2K2 +K(2 + 9θ2σ̌2) := K3. (5.12)

Step 3. We observe from (5.12) that there is a positive constant K4 such that

E
(

sup
k≤t≤k+1

zθ(t)
)
≤ K4, k = 1, 2, · · · .

Let ε̄ > 0 be arbitrary. Then, by the well-known Chebyshev inequality, we have

P
{

sup
k≤t≤k+1

zθ(t) > k1+ε̄
}
≤ K4

k1+ε̄
, k = 1, 2, . . . .

Applying the well-known Borel–Cantelli lemma (see e.g. [19]), we obtain that for almost all

ω ∈ Ω,

sup
k≤t≤k+1

zθ(t) ≤ k1+ε̄ (5.13)

holds for all but finitely many k. Hence, there exists a k0(ω), for almost all ω ∈ Ω, for which

(5.13) holds whenever k ≥ k0. Consequently, for almost all ω ∈ Ω, if k ≥ k0 and k ≤ t ≤ k+1,

log(zθ(t))

log t
≤ (1 + ε̄) log k

log k
= 1 + ε̄.

Therefore

lim sup
t→∞

log(z(t))

log t
≤ 1 + ε̄

θ
a.s.

Letting ε̄→ 0 and recalling that z(t) = 1 + y(t) we obtain

lim sup
t→∞

log(y(t))

log t
≤ 1

θ
a.s.

This implies, by recalling that y(t) = 1/V (x(t)),

lim sup
t→∞

log(V (x(t)))

log t
≥ −1

θ
a.s.

Since V (x(t)) ≤ |C̄||x(t)|, we then have

lim sup
t→∞

log(|x(t)|)
log t

≥ −1

θ
a.s.

But this holds for any θ that obeys (5.3), we must therefore have the assertion (5.2).
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If we set the right-hand-side term of (5.2) to be θ̂, Theorem 5.1 shows that the solution

will not decay faster than t−(θ̂+ε) asymptotically for any ε > 0, with probability one. In the

following theorem, we will show that the solution will not grow faster than t1+ε.

Theorem 5.2 Under condition (3.2), the solution x(t) of equation (1.4) obeys

lim sup
t→∞

log(|x(t)|)
log t

≤ 1 a.s. (5.14)

for any initial value x(0) ∈ Rn
+.

Proof. By Theorem 3.2, the solution obeys (3.1). Define

V (x, i) = C̄(i)x for x ∈ Rn
+ × S,

where C̄(i) = (C1(i), . . . , Cn(i)). By the generalized Itô formula, we have

dV (x(t), r(t)) = LV (x(t), r(t))dt+ xT (t)C(r(t))σ(r(t))dB(t).

where LV : Rn
+ × S→ R is defined by

LV (x, i) = xTC(i)[b(i) + A(i)x] +
∑
j∈S

γijV (x, j).

By condition (3.2), it is easy to show that there is a constant H1 > 0 such that

LV (x, i) ≤ H1, ∀(x, i) ∈ Rn
+ × S.

Hence

dV (x(t), r(t)) ≤ H1dt+ xT (t)C(r(t))σ(r(t))dB(t). (5.15)

From here, we can show, in the same way as in Step 2 of the proof of Theorem 5.1, that there

is a constant H2 > 0 such that

E
(

sup
k≤t≤k+1

|x(t)|
)
≤ H2, k = 1, 2, · · · , (5.16)

and then show the required assertion (5.14) in the same way as in Step 3 of the proof of

Theorem 5.1.

We should point out that Theorem 5.2 holds for arbitrary growth rates bm(i) and noise

intensities σm(i). In other words, under condition (3.2), the population will not grow faster

than t1+ε asymptotically for any ε > 0 with probability one no matter the growth rates and

noise intensities are small and large.
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Theorem 5.3 Let Assumption 4.1 and condition (5.1) hold. Assume that there are positive

numbers c1, . . . , cn such that

−λ := max
i∈S

λ+
max(CA(i) + AT (i)C) < 0, (5.17)

where C = diag(c1, . . . , cn). Then for any given initial value x(0) ∈ Rn
+, the solution x(t) of

equation (1.4) obeys

lim sup
t→∞

1

t

∫ t

0

|x(u)|du ≤ 2|C̄|
λ

∑
i∈S

πi[b̌(i)− 1
2
σ̂2(i)] a.s. (5.18)

and

lim inf
t→∞

1

t

∫ t

0

|x(u)|du ≥ 2ĉ

λ̌

∑
i∈S

πi[b̂(i)− 1
2
σ̌2(i)] > 0 a.s. (5.19)

where C̄ = (c1, . . . , cn), b̌(i) = max1≤m≤n bm(i), σ̂2(i) = min1≤m≤n σ
2
m(i), ĉ = min1≤m≤n cm

and

λ̌ = max
i∈S

[
λ+

max(−CA(i)− AT (i)C)
]
≥ λ > 0.

Proof. Let V (x) = C̄x for x ∈ Rn
+. It is easy to observe from Theorems 5.1 and 5.2 that

lim
t→∞

1

t
log(V (x(t))) = 0 a.s. (5.20)

By the Itô formula, we can derive from (5.5) that

d[log(V (x(t)))] =
(xT (t)Cb(r(t))

V (x(t))
+
xT (t)CA(r(t))x(t)

V (x(t))
− (xT (t)Cσ(r(t)))2

2V 2(x(t))

)
dt

+
xT (t)Cσ(r(t))

V (x(t))
dB(t) (5.21)

By condition (5.17) and the definitions of b̌(i) and σ̂2(i), we see that

d[log(V (x(t)))] ≤
(
b̌(r(t))− λ

2|C̄|
|x(t)| − 1

2
σ̂2(r(t))

)
dt+

xT (t)Cσ(r(t))

V (x(t))
dB(t). (5.22)

Hence

log(V (x(t))) +
λ

2|C̄|

∫ t

0

|x(u)|du

≤ log(V (x(0))) +

∫ t

0

(b̌(r(s))− 1
2
σ̂2(r(s)))ds+

∫ t

0

xT (s)Cσ(r(s))

V (x(s))
dB(s). (5.23)

However, it is straightforward to show by the strong law of large numbers of martingales (see

e.g. [19, Theorem 5.4 on page 12]) that

lim
t→∞

1

t

∫ t

0

xT (s)Cσ(r(s))

V (x(s))
dB(s) = 0 a.s.
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We can therefore divide both sides of (5.23) by t and then let t→∞ to obtain

λ

2|C̄|

(
lim sup
t→∞

1

t

∫ t

0

|x(u)|du
)
≤ lim

t→∞

1

t

∫ t

0

(b̌(r(s))− 1
2
σ̂2(r(s)))ds

=
∑
i∈S

πi[b̌(i)− 1
2
σ̂2(i)] a.s.

which implies the required assertion (5.18).

To prove another assertion, we observe from (5.21) that

d[log(V (x(t)))] ≥
(
b̂(r(t))− λ̌|x(t)|2

2V (x(t))
− 1

2
σ̌2(r(t))

)
dt+

xT (t)Cσ(r(t))

V (x(t))
dB(t). (5.24)

Note that

λ+
max(−CA(i)− AT (i)C) ≥ −λ+

max(CA(i) + AT (i)C)

for every i ∈ S, whence

λ̂ ≥ max
i∈S

[
− λ+

max(CA(i) + AT (i)C)
]

= −min
i∈S

λ+
max(CA(i) + AT (i)C) ≥ λ > 0.

It is also easy to see that V (x(t)) ≥ ĉ|x(t)|. It then follows from(5.24) that

log(V (x(t))) +
λ̂

2ĉ

∫ t

0

|x(u)|du

≥ log(V (x(0))) +

∫ t

0

(b̂(r(s))− 1
2
σ̌2(r(s)))ds+

∫ t

0

xT (s)Cσ(r(s))

V (x(s))
dB(s). (5.25)

Dividing both sides by t and then letting t→∞ gives the another assertion (5.19).

This theorem shows that the average in time of the norm of the solution of equation (1.4)

is asymptotically bounded by a pair of positive constants with probability one.

6 Case Studies

Let us now discuss two important cases for illustrations.

6.1 A single species population system

Let us consider a single species population system under regime switching described by the

following SDE

dx(t) = x(t)
(

[b(r(t))− a(r(t))x(t)]dt+ σ(r(t))dB(t)
)
, (6.1)
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where b(i), a(i) and σ(i) are now all positive numbers for i ∈ S. Assume that the Markov

chain r(·) obeys Assumption 4.1. Given an initial value x(0) > 0, the solution will remain

positive for all t ≥ 0. Set y(t) = 1/x(t). Then

dy(t) = [a(r(t)) + [−b(r(t)) + σ2(r(t))]y(t)]dt− σ(r(t))y(t)dB(t).

By the variation-of-constants formula (see e.g. [19, p.96]), we can show that this equation has

its explicit solution

y(t) = G(t)y(0) +

∫ t

0

a(r(s))G(t− s)ds,

where

G(t) = exp
(∫ t

0

[−b(r(s)) + 1
2
σ2(r(s))]ds−

∫ t

0

σ(r(s))dB(s)
)
.

Hence, equation (6.1) has the explicit solution

x(t) =
1

G(t)/x(0) +
∫ t

0
a(r(s))G(t− s)ds

. (6.2)

By Theorem 5.2, the solution of equation (6.1) obeys

lim sup
t→∞

log(x(t))

log t
≤ 1 a.s. (6.3)

Let us furthermore assume that b(i) > 1
2
σ2(i) for all i ∈ S. Then, by Theorem 5.1, the solution

of equation (6.1) also obeys

lim inf
t→∞

log(x(t))

log t
≥ −max

i∈S

( σ2(i)

2b(i)− σ2(i)

)
a.s. (6.4)

Consequently,

lim
t→∞

1

t
log(x(t)) = 0 a.s. (6.5)

By the Itô formula, it is easy to show that

log(x(t)) = log(x(0)) +

∫ t

0

(b(r(s))− 1
2
σ2(r(s)))ds−

∫ t

0

a(r(s))x(s)ds+

∫ t

0

σ(r(s))dB(s).

Dividing both sides by t and then letting t→∞ we obtain

lim
t→∞

1

t

∫ t

0

a(r(s))x(s)ds =
∑
i∈S

πi[b(i)− 1
2
σ2(i)] a.s. (6.6)

This implies

lim sup
t→∞

1

t

∫ t

0

x(s)ds ≤
∑

i∈S πi[b(i)−
1
2
σ2(i)]

mini∈S a(i)
a.s. (6.7)
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while

lim inf
t→∞

1

t

∫ t

0

x(s)ds ≥
∑

i∈S πi[b(i)−
1
2
σ2(i)]

maxi∈S a(i)
a.s. (6.8)

In particular, if a(i) ≡ a > 0 then

lim
t→∞

1

t

∫ t

0

x(s)ds =
1

a

∑
i∈S

πi[b(i)− 1
2
σ2(i)] a.s. (6.9)

6.2 Multi-dimensional system of facultative mutualism

Let us now return to equation (1.4) but impose the following condition:

−A(i) is a non-singular M-matrix for every i ∈ S. (6.10)

By the definition of M-matrices (see e.g. [3, 22]), we observe that A(i) = (aik)i))n×n has

negative diagonal elements and non-negative off-diagonal elements, that is

ajj(i) < 0, ajk(i) ≥ 0, 1 ≤ j, k ≤ n, j 6= k. (6.11)

In such a system, each species enhances the growth of the other, as the parameters ajk(i) ≥ 0

(j 6= k). This type of ecological interaction is known as facultative mutualism (see e.g.

[11, 21]).

Non-singular M-matrices have many very nice properties (see e.g. [3, 22]). In particular,

(6.11) is equivalent to the following statement:

• For each i ∈ S, there is a positive-definite diagonal matrix C(i) = diag(c1(i), . . . , cn(i))

such that C(i)A+ ATC(i) is a negative-definite matrix.

This implies that

λ+
max(C(i)A+ ATC(i)) ≤ λmax(C(i)A+ ATC(i)) < 0.

By Theorems 2.1 and 5.2, we observe that, under condition (6.10), equation (1.4) has a unique

solution x(t) ∈ Rn
+ on t ∈ R+ which obeys

lim sup
t→∞

log(|x(t)|)
log t

≤ 1 a.s. (6.12)

Moreover, we note that, for each 1 ≤ m ≤ n,

dxm(t) = xm(t)
[(
bm(r(t)) +

n∑
j=1

amj(r(t))xj(t)
)
dt+ σm(r(t))dB(t)

]
.

22



Introduce the corresponding stochastic differential equation

dξm(t) = ξm(t)[(bm(r(t)) + amm(r(t))ξm(t))dt+ σm(r(t))dB(t)]

with initial value ξm(0) = xm(0). By the classical comparison theorem (see e.g. [13]) we have

xm(t) ≥ ξm(t) a.s. for all t ≥ 0. If we further assume that

bm(i) > 1
2
σ2
m(i), 1 ≤ m ≤ n, i ∈ S, (6.13)

then, by Theorem 5.1, we have

lim inf
t→∞

log(xm(t))

log t
≥ lim inf

t→∞

log(ξm(t))

log t
≥ −max

i∈S

( σ2
m(i)

2bm(i)− σ2
m(i)

)
a.s. (6.14)

Combining the results above we can conclude that, under conditions (6.10) and (6.13), the

solution of equation (1.4) obeys

lim
t→∞

1

t
log(xm(t)) = 0 a.s., 1 ≤ m ≤ n. (6.15)

Define ηm(t) = log(xm(t)) (1 ≤ m ≤ n) and η(t) = (η1(t), . . . , ηn(t))T . It is easy to show that

dη(t) = (ζ(r(t)) + A(r(t))x(t))dt+ σ(r(t))dB(t), (6.16)

where ζ(i) = (ζ1(i), · · · , ζn(i))T with ζm(i) = bm(i)− 1
2
σ2
m(i). Hence

1

t
(η(t)− η(0)) =

1

t

∫ t

0

ζ(r(s))ds+
1

t

∫ t

0

A(r(s))x(s)ds+
1

t

∫ t

0

σ(r(s))dB(s).

Letting t→∞, by (6.15) and the large number theory of martingales, the left-hand-side term

and the last term on the right-hand-side tend to zero while, by the ergodic theory, the first

term on the right-hand-side tends to
∑

i∈S πiζ(i), whence∑
i∈S

πiζ(i) + lim
t→∞

1

t

∫ t

0

A(r(s))x(s)ds = 0 a.s. (6.17)

In particular, if A(i) ≡ A with −A being a non-singular M-matrix, then the above equality

becomes ∑
i∈S

πiζ(i) + A
(

lim
t→∞

1

t

∫ t

0

x(s)ds
)

= 0 a.s.

which implies

lim
t→∞

1

t

∫ t

0

x(s)ds = (−A)−1
∑
i∈S

πiζ(i) a.s. (6.18)

It should be pointed out that by condition (6.13),
∑

i∈S πiζ(i) ∈ Rn
+; whence, by the theory

of M-Matrices (see e.g. [3, 22]), (−A)−1
∑

i∈S πiζ(i) ∈ Rn
+. We form the above result as a

theorem to conclude this section.
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Theorem 6.1 Let Assumption 4.1 and condition (6.13) hold. Assume also that A(i) ≡ A for

all i ∈ S with −A being a non-singular M-matrix. Then for any initial value x(0) ∈ Rn
+, the

solution of equation (1.4) obeys (6.18).

7 Conclusions

As in our previous paper [16], we consider a population system under both telegraph and white

noise. The white noise considered here is independent of the population size so is different

from that considered in [16]. We show that this type of white noise has some significant

effects on the population system. In particular, we reveal that a large white noise will force

the population to become extinct while the population may persistent under a relatively small

white noise.
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