Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Geometric reasoning via internet crowdsourcing

Jagadeesan, P. and Lynn, A. and Wenzel, J. and Corney, J.R. and Yan, X.T. and Sherlock, A. and Torres-Sanchez, C. and Regli, W. (2009) Geometric reasoning via internet crowdsourcing. In: Proceedings of the 2009 ACM Symposium on Solid and Physical Modeling, San Francisco, California, USA. ACM, New York, USA, pp. 313-318. ISBN 978-1-60558-711-0

[img]
Preview
PDF (acmpublishedpaper.pdf)
acmpublishedpaper.pdf

Download (1MB) | Preview

Abstract

The ability to interpret and reason about shapes is a peculiarly human capability that has proven difficult to reproduce algorithmically. So despite the fact that geometric modeling technology has made significant advances in the representation, display and modification of shapes, there have only been incremental advances in geometric reasoning. For example, although today's CAD systems can confidently identify isolated cylindrical holes, they struggle with more ambiguous tasks such as the identification of partial symmetries or similarities in arbitrary geometries. Even well defined problems such as 2D shape nesting or 3D packing generally resist elegant solution and rely instead on brute force explorations of a subset of the many possible solutions. Identifying economic ways to solving such problems would result in significant productivity gains across a wide range of industrial applications. The authors hypothesize that Internet Crowdsourcing might provide a pragmatic way of removing many geometric reasoning bottlenecks. This paper reports the results of experiments conducted with Amazon's mTurk site and designed to determine the feasibility of using Internet Crowdsourcing to carry out geometric reasoning tasks as well as establish some benchmark data for the quality, speed and costs of using this approach. After describing the general architecture and terminology of the mTurk Crowdsourcing system, the paper details the implementation and results of the following three investigations; 1) the identification of "Canonical" viewpoints for individual shapes, 2) the quantification of "similarity" relationships with-in collections of 3D models and 3) the efficient packing of 2D Strips into rectangular areas. The paper concludes with a discussion of the possibilities and limitations of the approach.