Picture of flying drone

Award-winning sensor signal processing research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in award-winning research into technology for detecting drones. - but also other internationally significant research from within the Department of Electronic & Electrical Engineering.

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Hydrostatic extrusion of UFG aluminium

Olejnik, L. and Kulczyk, M. and Pachla, W. and Rosochowski, A. (2009) Hydrostatic extrusion of UFG aluminium. International Journal of Material Forming, 2 (Suppl ). pp. 621-624. ISSN 1960-6206

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The feasibility of hydrostatic extrusion (HE) of ultrafine grained (UFG) AA1070 has been investigated. The UFG material was produced by equal channel angular pressing (ECAP) using a scaled-up, two-turn, S-shape channel. Four passes of ECAP were followed by three passes of HE, which reduced the billet cross-section from a 26 x 26 mm2 square to 5 mm diameter round section. The average grain size of 0.6 micron after ECAP was reduced to 0.4 micron by HE. The strength and hardness increased by ECAP were further increased by HE. Ductility was reduced by ECAP, however, it remained constant during HE. The suggested sequence of operations seems to be a feasible option for producing UFG billets for shaping elongated products.