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Abstract. In this paper we stochastically perturb the classical Lotka–Volterra model

ẋ(t) = diag(x1(t), · · · , xn(t))[b + Ax(t)]

into the stochastic differential equation

dx(t) = diag(x1(t), · · · , xn(t))[(b + Ax(t))dt + βdw(t)].

The main aim is to study the asymptotic properties of the solution. It is known (see e.g.

[3, 20]) if the noise is too large then the population may become extinct with probability one.

Our main aim here is to find out what happens if the noise is relatively small. In this paper

we will establish some new asymptotic properties for the moments as well as for the sample

paths of the solution. In particular, we will discuss the limit of the average in time of the

sample paths.
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boundedness.

AMS (MOS) subject classification: 60J65, 60H10, 34K40.

1 Introduction

The classical Lotka–Volterra model for n interacting species is described by the
n-dimensional differential equation

dx(t)

dt
= diag(x1(t), · · · , xn(t))[b + Ax(t)], (1.1)

where
x = (x1, · · · , xn)T , b = (b1, · · · , bn)T , A = (aij)n×n.

There is an extensive literature concerned with the dynamics of this model and
we here only mention Ahmad and Rao [1], Bereketoglu and Gyori [4], Freedman
and Ruan [9], He and Gopalsamy [11], Kuang and Smith [15], Teng and Yu [24]
among many others. In particular, the books by Gopalsamy [10], Kolmanovskii
and Myshkis [13] as well as Kuang [14] are good references in this area.
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On the other hand, population systems are often subject to environmental
noise. It is therefore useful to reveal how the noise affects the population sys-
tems. As a matter of fact, stochastic population systems have recently been
studied by many authors, for example, [2, 3, 6, 7, 8, 20, 21, 23]. In particu-
lar, Mao, Marion and Renshaw [21] revealed that the environmental noise can
suppress a potential population explosion while Mao [20] showed that different
structures of environmental noise may have different effects on the population
systems.

In this paper we consider the simple situation of the parameter perturbation.
Recall that the parameter bi represents the intrinsic growth rate of species i.
In practice we usually estimate it by an average value plus an error term. If
we still use bi to denote the average growth rate, then the intrinsic growth rate
becomes

bi + errori.

Let us consider a small subsequent time interval dt, during which xi(t) changes
to xi(t) + dxi(t). (We use the notation d· for the small change in any quantity
over this time interval when we intend to consider it as an infinitesimal change.)
Accordingly, equation (1.1) becomes

dxi(t)

dt
= (bi + errori)x(t) +

n
∑

j=1

aijxixj

for 1 ≤ i ≤ n, that is

dxi(t) = xi(t)
(

bi +

n
∑

j=1

aijxj

)

dt + xi(t) errori dt (1.2)

According to the well-known central limit theorem, the error term errori dt may
be approximated by a normal distribution with mean zero and variance β2

i dt.
In terms of mathematics,

errori dt ∼ N(0, β2
i dt),

which can be written as

errori dt ∼ βidw(t)

where dw(t) = w(t + dt) − w(t) is the increment of a Brownian motion that
follows N(0, dt). Hence equation (1.2) becomes the Itô stochastic differential
equation

dxi(t) = xi(t)
(

bi +

n
∑

j=1

aijxj

)

dt + xi(t)βidw(t),

that is, in the matrix form,

dx(t) = diag(x1(t), · · · , xn(t))[(b + Ax(t))dt + βdw(t)], (1.3)
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where β = (β1, · · · , βn)T that will be called the intensities of noise. For more
biological motivation on this type of modelling in population dynamics we refer
the reader to Gard [6, 7, 8]. We should mention that such an idea of stochastic
modelling has also been used widely in mathemtical finance, for example, in the
Nobel prize winning model, i.e. the geometric Brownian motion. Since equation
(1.3) describes a stochastic population dynamics, it is critical for the solution
to remain positive and not to explode to infinity in a finite time. Sufficient
conditions for these properties is one of the important topics in the study of
stochastic population systems (see e.g. [3, 8, 20, 23]). However, the main aim
of this paper is to discuss asymptotic properties of the solution.

It is known (see e.g. [3, 20]) if the noise is too large then the population
may become extinct. However, it is interesting to find out what happens if the
noise is relatively small. In this paper we will establish some new asymptotic
properties for the moments as well as for the sample paths of the solution. For
example, we will show that if −A is a non-singular M-matrix and bi > 1

2β2
i

(1 ≤ i ≤ n), then the average in time of the solution, 1
t

∫ t

0
x(s)ds, has its finite

limit with probability one and the limit is a solution to a simple linear equation.

2 Preliminaries

Throughout this paper, unless otherwise specified, we let (Ω,F , {Ft}t≥0, P) be
a complete probability space with a filtration {Ft}t≥0 satisfying the usual con-
ditions (i.e. it is right continuous and increasing while F0 contains all P-null
sets). Let w(t) denote a scalar Brownian motion defined on this probability
space. We also denote by R

n
+ the positive cone in R

n, that is R
n
+ = {x ∈ R

n :
xi > 0 for all 1 ≤ i ≤ n}. If A is a vector or matrix, its transpose is denoted by
AT . If A is a matrix, its trace norm is denoted by |A| =

√

trace(AT A) whilst
its operator norm is denoted by ‖A‖ = sup{|Ax| : |x| = 1}.

In this paper we will use a lot of quadratic functions of the form xT Ax for
the state x ∈ R

n
+ only. Therefore, for a symmetric n × n matrix A = (aij)n×n,

we recall the following definition

λ+
max(A) = sup

x∈R
n

+
,|x|=1

xT Ax,

which was introduced by Bahar and Mao [3]. Let us emphasise that this is
different from the largest eigenvalue λmax(A) of the matrix A. To see this more
clearly, let us recall the nice property of the largest eigenvalue:

λmax(A) = sup
x∈Rn,|x|=1

xT Ax.

It is therefore clear that we always have

λ+
max(A) ≤ λmax(A).
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In many situations we even have λ+
max(A) < λmax(A). For example, for

A =

[

−1 −1
−1 −1

]

,

we have λ+
max(A) = −1 < λmax(A) = 0. On the other hand, λ+

max(A) does have
many similar properties as λmax(A) has. For example, it follows straightforward
from the definition that

xT Ax ≤ λ+
max(A)|x|2 ∀x ∈ R

n
+

and
λ+

max(A) ≤ ‖A‖.

Moreover
λ+

max(A + B) ≤ λ+
max(A) + λ+

max(B)

if B is another symmetric n× n matrix. For more properties of λ+
max(A) please

see [3].
In this paper we will consider the stochastic population system (1.3) with

initial value x(0) ∈ R
n
+. As the ith state xi(t) of equation (1.3) is the size of

the ith species in the system, it should be nonnegative. Moreover, in order for
a stochastic differential equation to have a unique global (i.e. no explosion in a
finite time) solution for any given initial value, the coefficients of the equation
are generally required to satisfy the linear growth condition and local Lipschitz
condition (see e.g. [16, 17, 18, 19, 25]). However, the coefficients of equation
(1.3) do not satisfy the linear growth condition, though they are locally Lipschitz
continuous, so the solution of equation (1.3) may explode at a finite time. It
is therefore useful to establish some conditions under which the solution of
equation (1.3) is not only positive but will also not explode to infinity at any
finite time. The research in this direction is still a hot topic but we will not
discuss it here. Instead, we cite a theorem from [3] for the use of this paper.

Theorem 2.1 Assume that there are positive numbers c1, · · · , cn such that

λ+
max(C̄A + AT C̄) ≤ 0, (2.1)

where C̄ = diag(c1, · · · , cn). Then for any given initial value x(0) ∈ R
n
+, there

is a unique solution x(t) to equation (1.3) on t ≥ 0 and the solution will remain
in R

n
+ with probability 1, namely x(t) ∈ R

n
+ for all t ≥ 0 almost surely.

The theorem cited above follows from [3, Corollary 2.3] which is established
for the more general stochastic delay population system

dx(t) = diag(x1(t), · · · , xn(t))[(b + Ax(t) + Bx(t − τ))dt + βdw(t)]. (2.2)

By setting B = 0 this equation becomes system (1.3) and hence Theorem 2.1
follows. The reader may find other alternative conditions in e.g. [3, 20] but we
will mainly use condition (2.1) in this paper.
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Bahar and Mao [3] also show that if the noise is sufficiently large, the solution
of equation (1.3) will become extinct with probability one. To be more precise,
we state another result which follows from [3, Theorem 4.1] by setting B = 0 in
equation (2.2).

Theorem 2.2 Let (2.1) hold. Assume moreover that the noise intensities βi

are sufficiently large in the sense that

βiβj > bi + bj , 1 ≤ i, j ≤ n. (2.3)

Then for any given initial value x(0) ∈ R
n
+, the solution x(t) of equation (1.3)

has the property that

lim sup
t→∞

1

t
log(|x(t)|) ≤ −

ϕ

2
a.s. (2.4)

where

ϕ = min
1≤i,j≤n

(βiβj − bi − bj) > 0.

That is, the population will become extinct exponentially with probability one.

This theorem reveals the important fact that the environmental noise may
make the population extinct. For example, consider the scalar Lotka–Volterra
model

dx(t)

dt
= x(t)[µ − αx(t)]. (2.5)

It is well known that if α > 0 and µ > 0, then for any x(0) > 0, its solution x(t)
obeys

lim
t→∞

x(t) =
µ

α
.

However, consider its associated stochastic Lotka–Volterra model

dx(t) = x(t)
(

[µ − αx(t)]dt + σdw(t)
)

, (2.6)

where σ > 0. By Theorem 2.2, if σ2 > 2µ, then the solution to this stochastic
equation will become extinct with probability one, namely

lim
t→∞

x(t) = 0 a.s.

The interesting question is: what happens if the noise is not so strong? Our
main aim in this paper is to study the asymptotic properties of the solution of
equation (1.3) when the noise is relatively small.
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3 Asymptotic Properties

Let us begin with the following theorem.

Theorem 3.1 Assume that there are positive numbers c1, · · · , cn such that

−λ := λ+
max(C̄A + AT C̄) < 0, (3.1)

where C̄ = diag(c1, · · · , cn). Then for any given initial value x(0) ∈ R
n
+, the

solution x(t) of equation (1.3) has the properties that

lim sup
t→∞

∫ t+1

t

E|x(u)|2du ≤
4|C||C̄b|

λ2

(

1 +
|C̄b|

ĉ

)

, (3.2)

lim sup
t→∞

E

(

sup
t≤u≤t+1

|x(u)|
)

≤
2|C||C̄b|

ĉ

(

1 +
|C̄b|

ĉ

)

+
6|C̄β|

ĉ

√

|C||C̄b|

λ2

(

1 +
|C̄b|

ĉ

)

, (3.3)

and

lim sup
t→∞

log(|x(t)|)

log t
≤ 1 a.s. (3.4)

where ĉ = min1≤i≤n ci.

Proof. By Theorem 2.1, the solution x(t) will remain in R
n
+ for all t ≥ 0 with

probability 1. Set C = (c1, · · · , cn)T ∈ R
n
+ and define

V (x) = CT x =

n
∑

i=1

cixi for x ∈ R
n
+.

By the Itô formula, we have

dV (x(t)) = xT (t)C̄
[

(b + Ax(t))dt + βdw(t)
]

. (3.5)

By condition (3.1),

xT (t)C̄Ax(t) =
1

2
xT (t)(C̄A + AT C̄)x(t) ≤ −1

2λ|x(t)|2.

It then follows from (3.5) that

dV (x(t)) ≤
(

|C̄b||x(t)| − 1
2λ|x(t)|2

)

dt + xT (t)C̄βdw(t). (3.6)

Let γ > 0 be arbitrary. By the Itô formula once again, we have

d[eγtV (x(t))] = eγt[γV (x(t))dt + dV (x(t))]

≤ eγt
[

(γ|C| + |C̄b|)|x(t)| − 1
2λ|x(t)|2

]

dt + eγtxT (t)C̄βdw(t).
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But

(γ|C| + |C̄b|)|x(t)| − 1
2λ|x(t)|2 ≤

(γ|C| + |C̄b|)2

2λ
.

So

d[eγtV (x(t))] ≤
eγt(γ|C| + |C̄b|)2

2λ
+ eγtxT (t)C̄βdw(t).

This implies

eγt
EV (x(t)) ≤ V (x(0)) +

(eγt − 1)(γ|C| + |C̄b|)2

2λγ
.

Hence

lim sup
t→∞

EV (x(t)) ≤
(γ|C| + |C̄b|)2

2λγ
.

Choosing γ = |C̄b|/|C|, we obtain that

lim sup
t→∞

EV (x(t)) ≤
2|C||C̄b|

λ
. (3.7)

Note that

|x(t)| ≤

n
∑

i=1

xi(t) ≤
V (x(t))

ĉ
. (3.8)

Consequently

lim sup
t→∞

E|x(t)| ≤
2|C||C̄b|

λĉ
. (3.9)

On the other hand, it follows from (3.6) that

0 ≤ EV (x(t)) + |C̄b|

∫ t+1

t

E|x(u)|du − 1
2λE

∫ t+1

t

|x(u)|2du.

This, together with (3.7) and (3.9), implies that

lim sup
t→∞

E

∫ t+1

t

|x(u)|2du ≤
4|C||C̄b|

λ2

(

1 +
|C̄b|

ĉ

)

. (3.10)

By the well-known Fubini theorem, we obtain the required assertion (3.2).
Moreover, we can also derive from (3.6) that

E

(

sup
t≤u≤t+1

V (x(u))
)

≤ EV (x(t)) + |C̄b|

∫ t+1

t

E|x(u)|du

+ E

(

sup
t≤u≤t+1

∫ u

t

xT (r)C̄βdw(r)
)

.
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But, by the well-known Burkholder–Davis–Gundy inequality and the Hölder
inequality, we derive that

E

(

sup
t≤u≤t+1

∫ u

t

xT (r)C̄βdw(r)
)

≤ 3E

(

∫ t+1

t

|xT (u)C̄β|2du
)

1
2

≤ 3|C̄β|
(

E

∫ t+1

t

|x(u)|2du
)

1
2
.

Therefore

E

(

sup
t≤u≤t+1

V (x(u))
)

≤ EV (x(t)) + |C̄b|

∫ t+1

t

E|x(u)|du

+ 3|C̄β|
(

E

∫ t+1

t

|x(u)|2du
)

1
2
.

This, together with (3.7), (3.9) and (3.10), yields

lim sup
t→∞

E

(

sup
t≤u≤t+1

V (x(u))
)

≤
2|C||C̄b|

λ

(

1 +
|C̄b|

ĉ

)

+ 6|C̄β|

√

|C||C̄b|

λ2

(

1 +
|C̄b|

ĉ

)

.

Recalling (3.8) we obtain the another assertion (3.3).
To prove assertion (3.4) we observe from (3.3) that there is a positive con-

stant K such that

E

(

sup
k≤u≤k+1

|x(u)|
)

≤ K, k = 1, 2, · · · .

Let ε > 0 be arbitrary. Then, by the well-known Chebyshev inequality, we have

P

{

sup
k≤t≤k+1

|x(t)| > k1+ε
}

≤
K

k1+ε
, k = 1, 2, · · · .

Applying the well-known Borel–Cantelli lemma (see e.g. [19]), we obtain that
for almost all ω ∈ Ω,

sup
k≤t≤k+1

|x(t)| ≤ k1+ε (3.11)

holds for all but finitely many k. Hence, there exists a k0(ω), for almost all
ω ∈ Ω, for which (3.11) holds whenever k ≥ k0. Consequently, for almost all
ω ∈ Ω, if k ≥ k0 and k ≤ t ≤ k + 1,

log(|x(t)|)

log t
≤

(1 + ε) log k

log k
= 1 + ε.

Therefore

lim sup
t→∞

log(|x(t)|)

log t
≤ 1 + ε a.s.



Stochastic Population Dynamics 9

Letting ε → 0 we obtain the desired assertion (3.4). The proof is therefore
complete. �

It is straightforward to see from assertion (3.2) that

lim sup
t→∞

1

t

∫ t

0

E|x(u)|2du ≤
4|C||C̄b|

λ2

(

1 +
|C̄b|

ĉ

)

.

This means the average in time of the second moment of the solution is bounded.
Moreover, assertion (3.4) shows that for any ε > 0, there is a positive random
variable Tε such that, with probability one,

|x(t)| ≤ t1+ε ∀t ≥ Tε.

In other words, with probability one, the solution will not grow faster than t1+ε.
In the following theorem, we will show that under an additional condition, the
solution will not decay faster than t−(θ+ε), where θ will be specified precisely.

Theorem 3.2 Assume that condition (2.1) holds. Assume also that

b̂ := min
1≤i≤n

bi >
1

2
max

1≤i≤n
β2

i :=
1

2
β̌2. (3.12)

Then for any given initial value x(0) ∈ R
n
+, the solution x(t) of equation (1.3)

has the property that

lim inf
t→∞

log(|x(t)|)

log t
≥ −

β̌2

2b̂ − β̌2
a.s. (3.13)

Proof. By Theorem 2.1, the solution x(t) will remain in R
n
+ for all t ≥ 0 with

probability 1. Let V : R
n
+ → (0,∞) be the same as defined in the proof of

Theorem 3.1 and define

y(t) =
1

V (x(t))
on t ≥ 0.

By the Itô formula, we derive from (3.5) that

dy(t) = −y2(t)dV (x(t)) + y3(t)(xT (t)C̄β)2dt

=
[

− y2(t)xT (t)C̄(b + Ax(t)) + y3(t)(xT (t)C̄β)2
]

dt

− y2(t)xT (t)C̄βdw(t). (3.14)

Choose any θ such that

0 < θ <
2b̂

β̌2
− 1. (3.15)

Define

z(t) = 1 + y(t) on t ≥ 0.
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Applying the Itô formula again we have

dzθ(t) = θzθ−1(t)dy(t) − 1
2θ(1 − θ)zθ−2(t)y4(t)(xT (t)C̄β)2dt

= θzθ−2(t)
(

z(t)
[

− y2(t)xT (t)C̄(b + Ax(t)) + y3(t)(xT (t)C̄β)2
]

− 1
2 (1 − θ)y4(t)(xT (t)C̄β)2

)

dt

− θzθ−1(t)y2(t)xT (t)C̄βdw(t). (3.16)

Dropping t from x(t) etc. we compute that

z
[

− y2xT C̄(b + Ax) + y3(xT C̄β)2
]

− 1
2 (1 − θ)y4(xT C̄β)2

= −y2xT C̄b − y2xT C̄Ax − y3xT C̄b − y3xT C̄Ax

+y3(xT C̄β)2 + 1
2 (1 + θ)y4(xT C̄β)2

≤ −
xT C̄Ax

V 2(x)
+

(xT C̄β)2 − xT C̄Ax

V 2(x)
y −

(xT C̄b

V (x)
− 1

2 (1 + θ)
(xT C̄β)2

V 2(x)

)

y2.

It is easy to see that for all x ∈ R
n
+,

−
xT C̄Ax

V 2(x)
≤ K1 and

(xT C̄β)2 − xT C̄Ax

V 2(x)
≤ K1,

where K1 is a positive constant, while

xT C̄b

V (x)
≥ b̂ and

(xT C̄β)2

V 2(x)
≤ β̌2.

Hence

z
[

− y2xT C̄(b + Ax) + y3(xT C̄β)2
]

− 1
2 (1 − θ)y4(xT C̄β)2

≤ K1(1 + y) − [b̂ − 1
2 (1 + θ)β̌2]y2.

Substituting this into (3.16) yields

dzθ(t) ≤ θzθ−2(t)
(

K1(1 + y(t)) − [b̂ − 1
2 (1 + θ)β̌2]y2(t)

)

dt

− θzθ−1(t)y2(t)xT (t)C̄βdw(t). (3.17)

Now, choose ε > 0 sufficiently small for

ε

θ
< [b̂ − 1

2 (1 + θ)β̌2]. (3.18)

Then, by the Itô formula,

d[eεtzθ(t)] = eεt[εzθ(t)dt + dzθ(t)]

≤ θεεtzθ−2(t)
(ε

θ
(1 + y(t))2 + K1(1 + y(t)) − [b̂ − 1

2 (1 + θ)β̌2]y2(t)
)

dt

− εεtθzθ−1(t)y2(t)xT (t)C̄βdw(t).
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It is easy to see that there is a constant K2 such that

θ(1 + y)θ−2
(ε

θ
(1 + y)2 + K1(1 + y) − [b̂ − 1

2 (1 + θ)β̌2]y2
)

≤ K2 (3.19)

on y > 0. Thus

d[eεtzθ(t)] ≤ K2ε
εtdt − εεtθzθ−1(t)y2(t)xT (t)C̄βdw(t).

This implies

E[eεtzθ(t)] ≤ zθ(0) +
K2

ε
εεt,

whence

lim sup
t→∞

E[zθ(t)] ≤
K2

ε
. (3.20)

Moreover, using (3.19), we observe from (3.17) that

dzθ(t) ≤ K2dt − θzθ−1(t)y2(t)xT (t)C̄βdw(t).

This implies that

E

(

sup
t≤u≤t+1

zθ(u)
)

≤ E[zθ(t)] + K2 + E

(

sup
t≤u≤t+1

∣

∣

∣

∫ u

t

θzθ−1(r)y2(r)xT (r)C̄βdw(r)
∣

∣

∣

)

. (3.21)

But, by the well-known Burkholder–Davis–Gundy inequality (see e.g. [19, 22]),
we compute

E

(

sup
t≤u≤t+1

∣

∣

∣

∫ u

t

θzθ−1(r)y2(r)xT (r)C̄βdw(r)
∣

∣

∣

)

≤ 3θE

(

∫ t+1

t

z2θ−2(r)y4(r)(xT (r)C̄β)2dr
)

1
2

≤ 3θE

(

∫ t+1

t

z2θ(r)
(xT (r)C̄β)2

V 2(x(r))
dr

)

1
2

≤ 3θb̂E
([

sup
t≤r≤t+1

zθ(r)
]

∫ t+1

t

zθ(r)dr
)

1
2

≤ 1
2E

[

sup
t≤r≤t+1

zθ(r)
]

+
9θ2β̌2

2
E

∫ t+1

t

zθ(r)dr.

Substituting this into (3.21) gives

E

(

sup
t≤u≤t+1

zθ(u)
)

≤ 2E[zθ(t)] + 2K2 + 9θ2β̌2

∫ t+1

t

Ezθ(r)dr.
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Letting t → ∞ and using (3.20) we obtain that

lim sup
t→∞

E

(

sup
t≤u≤t+1

zθ(u)
)

≤ K2(2 + (2 + 9θ2β̌2)/ε). (3.22)

From this can we show, in the same way as (3.4) was proved, that

lim sup
t→∞

log(zθ(t))

log t
≤ 1 a.s.

This implies

lim sup
t→∞

log(y(t))

log t
≤

1

θ
a.s.

which further implies, by recalling the definition of y(t),

lim inf
t→∞

log(V (x(t)))

log t
≥ −

1

θ
a.s.

Since V (x(t)) ≤ |C||x(t)|, we then have

lim inf
t→∞

log(|x(t)|)

log t
≥ −

1

θ
a.s.

But this holds for any θ that obeys (3.15), we must therefore have the assertion
(3.13). �

Theorem 3.3 Assume that conditions (3.1) and (3.12) hold. Then for any
given initial value x(0) ∈ R

n
+, the solution x(t) of equation (1.3) obeys

lim sup
t→∞

1

t

∫ t

0

|x(u)|du ≤
2|C|

λ
(b̌ − 1

2 β̂2) a.s. (3.23)

and

lim inf
t→∞

1

t

∫ t

0

|x(u)|du ≥
2ĉ

λ̂
(b̂ − 1

2 β̌2) > 0 a.s. (3.24)

where b̌ = max1≤i≤n bi, β̂2 = min1≤i≤n β2
i , ĉ = min1≤i≤n ci and

λ̂ = λ+
max(−C̄A − AT C̄).

Proof. Let V (x) be the same as before. It is easy to observe from Theorems
3.1 and 3.2 that

lim
t→∞

1

t
log(V (x(t))) = 0 a.s. (3.25)

By the Itô formula, we derive from (3.5) that

d[log(V (x(t)))] =
(xT (t)C̄b

V (x(t))
+

xT (t)C̄Ax(t)

V (x(t))
−

(xT (t)C̄β)2

2V 2(x(t))

)

dt

+
xT (t)C̄β

V (x(t))
dw(t). (3.26)
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By condition (3.1) and the definitions of b̌ and β̂2, we then see

d[log(V (x(t)))] ≤
(

b̌ −
λ

2|C|
|x(t)| − 1

2 β̂2
)

dt +
xT (t)C̄β

V (x(t))
dw(t). (3.27)

Hence

log(V (x(t))) +
λ

2|C|

∫ t

0

|x(u)|du

≤ log(V (x(0))) + (b̌ − 1
2 β̂2)t +

∫ t

0

xT (u)C̄β

V (x(u))
dw(u). (3.28)

However, it is straightforward to show by the strong law of large numbers of
martingales (see e.g. [19, Theorem 3.4 on page 12]) that

lim
t→∞

1

t

∫ t

0

xT (u)C̄β

V (x(u))
dw(u) = 0 a.s.

We can therefore divide both sides of (3.28) by t and then let t → ∞ to obtain

λ

2|C|

(

lim sup
t→∞

1

t

∫ t

0

|x(u)|du
)

≤ b̌ − 1
2 β̂2 a.s.

which implies the required assertion (3.23). To prove the another assertion, we
observe from (3.26) that

d[log(V (x(t)))] ≥
(

b̂ −
λ̂|x(t)|2

2V (x(t))
− 1

2 β̌2
)

dt +
xT (t)C̄β

V (x(t))
dw(t). (3.29)

Noting that

λ̂ = λ+
max(−C̄A − AT C̄) ≥ −λ+

max(C̄A + AT C̄) ≥ λ > 0

and V (x(t)) ≥ ĉ|x(t)|, we then have

log(V (x(t))) +
λ̂

2ĉ

∫ t

0

|x(u)|du

≥ log(V (x(0))) + (b̂ − 1
2 β̌2)t +

∫ t

0

xT (u)C̄β

V (x(u))
dw(u). (3.30)

Dividing both sides by t and then letting t → ∞ yields the another assertion
(3.24). �

Theorem 3.3 shows that the average in time of the norm of the solution of
equation (1.3) is bounded with probability one.

4 Case Studies

In the proof of Theorem 3.3 we have used conditions (3.1) etc. to estimate so
that we only have inequality (3.26). However, in some special cases, we may
have an equality in order to have more precise result than (3.23).
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4.1 One-dimensional case

Let us consider the one-dimensional stochastic population system

dx(t) = x(t)[(b − ax(t))dt + βdw(t)], (4.1)

where b, a and β are all positive numbers. Given the initial value x(0) > 0, the
solution will remain positive for all t ≥ 0. Set y(t) = 1/x(t). Then

dy(t) = [a + (−b + β2)y(t)]dt − βy(t)dw(t).

This equation has its explicit solution

y(t) = exp[(−b + 1
2β2)t − βw(t)]

(

y(0) + a

∫ t

0

exp[(b − 1
2β2)s + βw(s)]ds

)

.

Hence, equation (4.1) has the explicit solution

x(t) =
exp[(b − 1

2β2)t + βw(t)]

x−1(0) + a
∫ t

0
exp[(b − 1

2β2)s + βw(s)]ds
. (4.2)

By Theorem 3.1, the solution of equation (4.1) obeys

lim sup
t→∞

log(x(t))

log t
≤ 1 a.s. (4.3)

Let us furthermore assume that b > 1
2β2. Then, by Theorem 3.2, the solution

of equation (4.1) also obeys

lim inf
t→∞

log(x(t))

log t
≥ −

β2

2b − β2
a.s. (4.4)

Consequently,

lim
t→∞

1

t
log(x(t)) = 0 a.s. (4.5)

By the Itô formula, it is easy to show that

log(x(t)) = log(x(0)) + (b − 1
2β2)t − a

∫ t

0

x(u)du + βw(t).

Dividing both sides by t and then letting t → ∞ we obtain

lim
t→∞

1

t

∫ t

0

x(u)du =
b − 1

2β2

a
a.s. (4.6)
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4.2 Multi-dimensional system of facultative mutualism

Let us now return to equation (1.3) but impose the following condition

aii < 0, aij ≥ 0, 1 ≤ i, j ≤ n, i 6= j. (4.7)

In such a system, each species enhances the growth of the other, as the param-
eters aij ≥ 0 (i 6= j). This type of ecological interaction is known as facultative
mutualism (see e.g. [11, 21]). We assume that

−A is a non-singular M-matrix. (4.8)

Non-singular M-matrices have many very nice properties (see e.g. [5, 22]). In
particular, (4.7) is equivalent to one of the followings:

(i) There is a positive-definite diagonal matrix C̄ = diag(c1, · · · , cn) such that
−(C̄A + AT C̄) is a positive-definite matrix.

(ii) For any y ∈ R
n
+, the linear equation y + Ax = 0 has a unique solution

x ∈ R
n
+.

Property (i) shows that

λ+
max(C̄A + AT C̄) ≤ λmax(C̄A + AT C̄) < 0.

By Theorem 3.1, we observe that, under condition (4.8), the solution of equation
(1.3) obeys

lim sup
t→∞

log(|x(t)|)

log t
≤ 1 a.s. (4.9)

Moreover, we note that, for each 1 ≤ i ≤ n,

dxi(t) = xi(t)
[(

bi +

n
∑

j=1

aijxi(t)
)

dt + βidw(t)
]

.

Introduce the corresponding stochastic differential equation

dξi(t) = ξi(t)[(bi + aiiξj(t))dt + βidw(t)]

with initial value ξi(0) = xi(0). By the classical comparison theorem (see e.g.
[12]) we have xi(t) ≥ ξi(t) a.s. for all t ≥ 0. If we further assume that

bi > 1
2β2

i , 1 ≤ i ≤ n, (4.10)

then, by result (4.4), we have

lim inf
t→∞

log(xi(t))

log t
≥ −

β2
i

2bi − β2
i

a.s. (4.11)
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Combining the results above we can conclude that, under conditions (4.8) and
(4.10), the solution of equation (1.3) obeys

lim
t→∞

1

t
log(xi(t)) = 0 a.s., 1 ≤ i ≤ n. (4.12)

Define ηi(t) = log(xi(t)) (1 ≤ i ≤ n) and η(t) = (η1(t), · · · , ηn(t))T . It is easy
to show that

dη(t) = (ζ + Ax(t))dt + βdw(t), (4.13)

where ζ = (ζ1, · · · , ζn)T with ζi = bi −
1
2β2

i . By condition (4.10), ζ ∈ R
n
+,

whence by Property (ii), the linear equation

ζ + Aσ = 0 (4.14)

has a unique solution σ ∈ R
n
+. However, it follows from (4.13) that

1

t
(η(t) − η(0)) = ζ + A

(1

t

∫ t

0

x(u)du
)

+
βw(t)

t
.

Noting that limt→∞ w(t)/t → 0 a.s. and using (4.12) we may let t → ∞ to
obtain that

ζ + A
(

lim
t→∞

1

t

∫ t

0

x(u)du
)

= 0 a.s.

This, together with (4.14), yields

lim
t→∞

1

t

∫ t

0

x(u)du = σ a.s. (4.15)

We form the above result as a theorem to conclude our paper.

Theorem 4.1 Under conditions (4.8) and (4.10), the solution of equation (1.3)
obeys (4.15), where σ ∈ R

n
+ is the unique solution to equation (4.14).
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