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Abstract

The main aim of this paper is to discuss the almost surely asymptotic stability
of the neutral stochastic differential delay equations (NSDDEs) with Markovian
switching. Linear NSDDEs with Markovian switching and nonlinear examples will
be discussed to illustrate the theory.
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1 Introduction

Many dynamical systems not only depend on present and past states but also involve
derivatives with delays. Hale and Lune [7] have studied deterministic neutral differential
delay equations (NDDEs) and their stability. Taking the environmental disturbances
into account, Kolmanovskii and Nosov [13] and Mao [15] discussed the neutral stochastic
differential delay equations (NSDDEs)

d[x(t)−D(x(t− τ))] = f(x(t), x(t− τ), t)dt+ g(x(t), x(t− τ), t)dB(t). (1.1)

Kolmanovskii and Nosov [13] not only established the theory of existence and uniqueness
of the solution to Eq. (1.1) but also investigated the stability and asymptotic stability of
the equations, while Mao [15] studied the exponential stability of the equations.
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On the other hand, many practical systems may experience abrupt changes in their
structure and parameters caused by phenomena such as component failures or repairs,
changing subsystem interconnections, and abrupt environmental disturbances. The hy-
brid systems driven by continuous-time Markov chains have recently been developed to
cope with such situation. The hybrid systems combine a part of the state that takes values
continuously and another part of the state that takes discrete values. Along the trajec-
tories of the Markovian jump system, the mode switches from one value to another in a
random way, governed by a Markov process with discrete state space; the evolution of this
Markov process may also depend on the continuous state. The continuous state, on the
other hand, flows along the solution of an ordinary or stochastic differential equation; the
dynamics of this differential equation may depend on the value of the mode at the given
time. In general, the continuous state may also display instantaneous jumps, concurrently
or independently of the jumps of the mode. In the special case where the evolution of the
continuous state does not display any jumps the resulting stochastic process is typically
referred to as a switching diffusion process. An important class of hybrid systems is the
jump linear systems

ẋ(t) = A(r(t))x(t) (1.2)

where a part of the state x(t) takes values in Rn while another part of the state r(t)
is a Markov chain taking values in S = {1, 2, · · · , N}. One of the important issues in
the study of hybrid systems is the automatic control, with consequent emphasis being
placed on the analysis of stability. For more detailed account on hybrid systems please
see [1, 4, 5, 9, 10, 11, 19, 20, 22, 23, 24, 26, 27, 29].

Motivated by hybrid systems, Kolmanovskii et al [12] studied the NSDDEs with
Markovian switching

d[x(t)−D(x(t− τ), r(t))]

= f(x(t), x(t− τ), t, r(t)) + g(x(t), x(t− τ), t, r(t))dB(t). (1.3)

In [12], the existence and uniqueness of the solution to Eq. (1.3) are discussed and,
moreover, both moment asymptotic boundedness and moment exponential stability are
investigated. In this paper, we will mainly discuss the almost surely asymptotic stability
of the equation.

2 NSDDEs with Markovian Switching

Throughout this paper, unless otherwise specified, we let (Ω,F , {Ft}t≥0,P) be a complete
probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is increas-
ing and right continuous while F0 contains all P-null sets). Let B(t) = (B1(t), · · · , Bm(t))T

be an m-dimensional Brownian motion defined on the probability space. Let | · | denote
the Euclidean norm for vectors or the trace norm for matrices but ‖·‖ denote the operator
norm for matrices. If A is a symmetric matrix, denote by λmax(A) and λmin(A) its biggest
and smallest eigenvalue respectively. Let τ > 0 and C([−τ, 0]; Rn) denote the family of
all continuous Rn-valued functions on [−τ, 0]. Let Cb

F0
([−τ, 0]; Rn) be the family of all

F0-measurable bounded C([−τ, 0]; Rn)-valued random variables ξ = {ξ(θ) : −τ ≤ θ ≤ 0}.
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Let r(t), t ≥ 0, be a right-continuous Markov chain on the probability space taking
values in a finite state space S = {1, 2, · · · , N} with generator Γ = (γij)N×N given by

P{r(t+ ∆) = j|r(t) = i} =

{
γij∆ + o(∆) if i 6= j

1 + γij∆ + o(∆) if i = j

where ∆ > 0. Here γij ≥ 0 is transition rate from i to j if i 6= j while

γii = −
∑
j 6=i

γij.

We assume that the Markov chain r(·) is independent of the Brownian motion B(·). It is
well known that almost every sample path of r(t) is a right continuous step function. It
is useful to recall that a continuous-time Markov chain r(t) with generator Γ = {γij}N×N
can be represented as a stochastic integral with respect to a Poisson random measure (cf.
[2, 6]):

dr(t) =

∫
R
h̄(r(t−), y)ν(dt, dy), t ≥ 0 (2.1)

with initial value r(0) = i0 ∈ S, where ν(dt, dy) is a Poisson random measure with
intensity dt×m(dy) in which m is the Lebesgue measure on R while the explicit definition
of h̄ : S × R→ R can be found in [2, 6] but we will not need it in this paper.

Consider an NSDDE with Markovian switching of the form

d[x(t)−D(x(t−τ), r(t))] = f(x(t), x(t−τ), t, r(t))dt+g(x(t), x(t−τ), t, r(t))dB(t) (2.2)

on t ≥ 0 with initial data {x(θ) : −τ ≤ θ ≤ 0} = ξ ∈ Cb
F0

([−τ, 0]; Rn) and r(0) = i0 ∈ S,
where

D : Rn × S→ Rn, f : Rn × Rn × R+ × S→ Rn and g : Rn × Rn × R+ × S→ Rn×m.

In this paper the following assumption is imposed as a standing hypothesis.

Assumption 2.1 Assume that both f and g satisfy the local Lipschitz condition. That
is, for each h > 0, there is an Lh > 0 such that

|f(x, y, t, i)− f(x̄, ȳ, t, i)| ∨ |g(x, y, t, i)− g(x̄, ȳ, t, i)| ≤ Lh(|x− x̄|+ |y − ȳ|)

for all (t, i) ∈ R+ × S and those x, y, x̄, ȳ ∈ Rn with x ∨ y ∨ x̄ ∨ ȳ ≤ h. Assume also that
for each i ∈ S, there is a constant κi ∈ (0, 1) such that

|D(x, i)−D(y, i)| ≤ κi|x− y|, ∀x, y ∈ Rn.

Assume moreover that for all (t, i) ∈ R+ × S,

D(0, i) = 0, f(0, 0, t, i) = 0, g(0, 0, t, i) = 0.

In general, this Assumption will only guarantee a unique maximal local solution
to Eq. (2.2) for any given initial data ξ and i0. However, the additional conditions
imposed in our main result, Theorem 3.1 below, will guarantee that this maximal local

3



solution is in fact a unique global solution (see Theorem A.1 below), which is denoted by
x(t; ξ, i0). To state our main result, we will need a few more notations. Let C(Rn; R+) and
C(Rn× [−τ,∞); R+) denote the families of all continuous non-negative functions defined
on Rn and Rn × [−τ,∞), respectively. Denote by L1(R+; R+) the family of all functions
γ : R+ → R+ such that

∫∞
0
γ(t)dt < ∞. If K is a subset of Rn, denote by d(x,K) the

Haussdorff semi-distance between x ∈ Rn and the set K, namely d(x,K) = infy∈K |x−y|.
If W is a real-valued function defined on Rn, then its kernel is denoted by Ker(W ), namely
Ker(W ) = {x ∈ Rn : W (x) = 0}. Let C2,1(Rn×R+×S; R+) denote the family of all non-
negative functions V (x, t, i) on Rn×R+×S that are continuously twice differentiable in x
and once in t. If V ∈ C2,1(Rn×R+×S; R+), define an operator LV from Rn×Rn×R+×S
to R by

LV (x, y, t, i) = Vt(x−D(y, i), t, i) + Vx(x−D(y, i), t, i)f(x, y, t, i)

+
1

2
trace[gT (x, y, t, i)Vxx(x−D(y, i), t, i)g(x, y, t, i)]

+
N∑
j=1

γijV (x−D(y, i), t, j), (2.3)

where

Vt(x, t, i) =
∂V (x, t, i)

∂t
, Vx(x, t, i) =

(
∂V (x, t, i)

∂x1

, . . . ,
∂V (x, t, i)

∂xn

)
and

Vxx(x, t, i) =

(
∂2V (x, t, i)

∂xi∂xj

)
n×n

.

For the convenience of the reader we cite the the generalized Itô’s formula (cf. [25]): If
V ∈ C2,1(Rn × R+ × S), then for any t ≥ 0

V (x(t)−D(x(t− τ), r(t)), t, r(t)) = V (x(0)−D(ξ(−τ), r(0)), 0, r(0))

+

∫ t

0

LV (x(s), x(s− τ), s, r(s))ds+

∫ t

0

Vx(x(s)−D(x(s− τ), r(s)), s, r(s))dB(s)

+

∫ t

0

∫
R

(V (x(s)−D(x(s− τ), r(s)), s, i0 + h̄(r(s−), l))

− V (x(s)−D(x(s− τ), r(s)), s, r(s)))µ(ds, dl), (2.4)

where µ(ds, dl) = ν(ds, dl)−m(dl)ds is a martingale measure.

Before we state our main result, let us cite the useful convergence theorem of non-
negative semimartingales (see [14, Theorem 7 on p.139]) as a lemma.

Lemma 2.2 Let A1(t) and A2(t) be two continuous adapted increasing processes on t ≥ 0
with A1(0) = A2(0) = 0 a.s. Let M(t) be a real-valued continuous local martingale with
M(0) = 0 a.s. Let ζ be a nonnegative F0-measurable random variable such that Eζ <∞.
Define

X(t) = ζ + A1(t)− A2(t) +M(t) for t ≥ 0.

4



If X(t) is nonnegative, then{
lim
t→∞

A1(t) <∞
}
⊂
{

lim
t→∞

X(t) <∞
}
∩
{

lim
t→∞

A2(t) <∞
}

a.s.

where C ⊂ D a.s. means P(C ∩Dc) = 0. In particular, if limt→∞A1(t) < ∞ a.s., then,
with probability one,

lim
t→∞

X(t) <∞, lim
t→∞

A2(t) <∞

and
−∞ < lim

t→∞
M(t) <∞.

That is, all of the three processes X(t), A2(t) and M(t) converge to finite random variables.

3 Almost Surely Asymptotic Stability

With the notations above, we can now state our main result in this paper.

Theorem 3.1 Let Assumption 2.1 hold. Assume that there are functions V ∈ C2,1(Rn×
R+ × S; R+), γ ∈ L1(R+; R+), U ∈ C(Rn × [−τ,∞); R+) and W ∈ C(Rn; R+) such that

LV (x, y, t, i) ≤ γ(t)− U(x, t) + U(y, t− τ)−W (x−D(y, i)) (3.1)

for (x, y, t, i) ∈ Rn × Rn × R+ × S, and

lim
|x|→∞

[
inf

(t,i)∈R+×S
V (x, t, i)

]
=∞. (3.2)

Then for any initial data {x(θ) : −τ ≤ θ ≤ 0} = ξ ∈ Cb
F0

([−τ, 0]; Rn) and r(0) = i0 ∈ S,
Eq. (2.2) has a unique global solution which is denoted by x(t; ξ, i0). Moreover, the
solution obeys that

lim sup
t→∞

V (x(t; ξ, i0)−D(x(t− τ ; ξ, i0), r(t)), t, r(t)) <∞ a.s. (3.3)

and Ker(W ) 6= ∅ and

lim
t→∞

d(x(t; ξ, i0)−D(x(t− τ ; ξ, i0), r(t)), Ker(W )) = 0 a.s. (3.4)

In particular, if W moreover has the property that

W (x) = 0 if and only if x = 0, (3.5)

then the solution further obeys that

lim
t→∞

x(t; ξ, i0) = 0 a.s. (3.6)
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Proof. The existence and uniqueness of the solution follows from Theorem A.1 we
therefore need only to prove the other assertions here. As the whole proof is very technical,
we will divide it into five steps.

Step 1. Let us first show assertion (3.3). Fix any initial data ξ and i0 and write
x(t; ξ, i0) = x(t) for simplicity. By the generalised Itô formula (2.4) and condition (3.1)
we have

V (x(t)−D(x(t− τ), r(t)), t, r(t))

≤ V (x(0)−D(ξ(−τ), r(0)), 0, r(0)) +M(t)

+

∫ t

0

[
γ(s)− U(x(s), s) + U(x(s− τ), s− τ)−W (x(s)−D(x(s− τ), r(s)))

]
ds

≤ V (x(0)−D(ξ(−τ), i0), 0, i0) +

∫ 0

−τ
U(ξ(s), s)ds

+

∫ t

0

γ(s)ds−
∫ t

0

W (x(s)−D(x(s− τ), r(s)))ds+M(t), (3.7)

where

M(t) =

∫ t

0

Vx(x(s)−D(x(s− τ), r(s)), s, r(s))g(x(s), x(s− τ), s, r(s))dB(s)

+

∫ t

0

∫
R

(V (x(s)−D(x(s− τ), r(s)), s, i0 + h̄(r(s−), l))

− V (x(s)−D(x(s− τ), r(s)), s, r(s)))µ(ds, dl),

which is a continuous local martingale with M(0) = 0 a.s. Applying Lemma 2.2 we
immediately obtain that

lim sup
t→∞

V (x(t)−D(x(t− τ), r(t)), t, r(t)) <∞ a.s. (3.8)

which is the required assertion (3.3). It then follows easily that

sup
0≤t<∞

V (x(t)−D(x(t− τ), r(t)), t, r(t)) <∞ a.s.

This, together with (3.2), yields

sup
0≤t<∞

|x(t)−D(x(t− τ), r(t))| <∞. (3.9)

But for any T > 0, by Assumption 2.1, we have, if 0 ≤ t ≤ T ,

|x(t)| ≤ |D(x(t− τ), r(t))|+ |x(t)−D(x(t− τ), r(t))|
≤ κ|x(t− τ)|+ |x(t)−D(x(t− τ), r(t))|,

where κ = maxi∈S κi < 1. This implies

sup
0≤t≤T

|x(t)| ≤ κ sup
0≤t≤T

|x(t− τ)|+ sup
0≤t≤T

|x(t)−D(x(t− τ), r(t))|

≤ κβ + κ sup
0≤t≤T

|x(t)|+ sup
0≤t≤T

|x(t)−D(x(t− τ), r(t))|,
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where β is the bound for the initial data ξ. Hence

sup
0≤t≤T

|x(t)| ≤ 1

1− κ

(
κβ + sup

0≤t≤T
|x(t)−D(x(t− τ), r(t))|

)
.

Letting T →∞ and using (3.9) we obtain that

sup
0≤t<∞

|x(t)| <∞ a.s. (3.10)

Step 2. Taking the expectations on both sides of (3.7) and letting t → ∞ (if
necessary, using the procedure of stopping times), we obtain that

E
∫ ∞

0

W (x(s)−D(x(s− τ), r(s)))ds <∞. (3.11)

This of course implies∫ ∞
0

W (x(s)−D(x(s− τ), r(s)))ds <∞ a.s. (3.12)

Set z(t) = x(t)−D(x(t− τ), r(t)) for t ≥ 0. It is straightforward to see from (3.12) that

lim inf
t→∞

W (z(t)) = 0 a.s. (3.13)

We now claim that

lim
t→∞

W (z(t)) = 0 a.s. (3.14)

If this is false, then

P
{

lim sup
t→∞

W (z(t)) > 0

}
> 0.

Hence there is a number ε > 0 such that

P(Ω1) ≥ 3ε, (3.15)

where

Ω1 =

{
lim sup
t→∞

W (z(t)) > 2ε

}
.

Recalling (3.10) as well as the boundedness of the initial data ξ, we can find a positive
number h, which depends on ε, sufficiently large for

P(Ω2) ≥ 1− ε, (3.16)

where

Ω2 =

{
sup

−τ≤t<∞
|z(t)| < h

}
.

It is easy to see from (3.15) and (3.16) that

P(Ω1 ∩ Ω2) ≥ 2ε. (3.17)
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We now define a sequence of stopping times,

τh = inf{t ≥ 0 : |z(t)| ≥ h},
σ1 = inf{t ≥ 0 : W (z(t)) ≥ 2ε},
σ2k = inf{t ≥ σ2k−1 : W (z(t)) ≤ ε}, k = 1, 2, . . . ,

σ2k+1 = inf{t ≥ σ2k : W (z(t)) ≥ 2ε}, k = 1, 2, . . . ,

where throughout this paper we set inf ∅ =∞. From (3.13) and the definitions of Ω1 and
Ω2, we observe that if ω ∈ Ω1 ∩ Ω2, then

τh =∞ and σk <∞, ∀k ≥ 1. (3.18)

Let IA denote the indicator function of set A. Noting the fact that σ2k < ∞ whenever
σ2k−1 <∞, we derive from (3.11) that

∞ >E
∫ ∞

0

W (z(t))dt

≥
∞∑
k=1

E

[
I{σ2k−1<∞,σ2k<∞,τh=∞}

∫ σ2k

σ2k−1

W (z(t))dt

]

≥ε
∞∑
k=1

E[I{σ2k−1<∞,τh=∞}(σ2k − σ2k−1)]. (3.19)

On the other hand, by Assumption 2.1, there exists a constant Kh > 0 such that

|f(x, y, t, i)|2 ∨ |g(x, y, t, i)|2 ≤ Kh

whenever |x| ∨ |y| ≤ h and (t, i) ∈ R+ × S. By the Hölder inequality and the Doob
martingale inequality, we compute that, for any T > 0 and k = 1, 2, · · · ,

E
[
I{τh∧σ2k−1<∞} sup

0≤t≤T
|z(τh ∧ (σ2k−1 + t))− z(τh ∧ σ2k−1)|2

]
≤ 2E

[
I{τh∧σ2k−1<∞} sup

0≤t≤T

∣∣∣ ∫ τh∧(σ2k−1+t)

τh∧σ2k−1

f(x(s), x(s− τ), s, r(s))ds
∣∣∣2]

+ 2E
[
I{τh∧σ2k−1<∞} sup

0≤t≤T

∣∣∣ ∫ τh∧(σ2k−1+t)

τh∧σ2k−1

g(x(s), x(s− τ), s, r(s))dB(s)
∣∣∣2]

≤ 2TE
[
I{τh∧σ2k−1<∞}

∫ τh∧(σ2k−1+T )

τh∧σ2k−1

|f(x(s), x(s− τ), s, r(s))|2ds
]

+ 8E
[
I{τh∧σ2k−1<∞}

∫ τh∧(σ2k−1+T )

τh∧σ2k−1

|g(x(s), x(s− τ), s, r(s))|2ds
]

≤ 2KhT (T + 4). (3.20)

Since W (·) is continuous in Rn, it must be uniformly continuous in the closed ball S̄h =
{x ∈ Rn : |x| ≤ h}. We can therefore choose δ = δ(ε) > 0 so small such that

|W (x)−W (y)| < ε/2 whenever x, y ∈ S̄h, |x− y| < δ. (3.21)
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We furthermore choose T = T (ε, δ, h) > 0 sufficiently small for

2KhT (T + 4)

δ2
< ε.

It then follows from (3.20) that

P
(
{σ2k−1 ∧ τh <∞} ∩

{
sup

0≤t≤T
|z(τh ∧ (σ2k−1 + t))− z(τh ∧ σ2k−1)| ≥ δ

})
< ε.

Noting that

{σ2k−1 <∞, τh =∞} = {τh ∧ σ2k−1 <∞, τh =∞} ⊂ {τh ∧ σ2k−1 <∞},

we hence have

P
(
{σ2k−1 <∞, τh =∞} ∩

{
sup

0≤t≤T
|z(σ2k−1 + t)− z(σ2k−1)| ≥ δ

})
< ε.

By (3.17) and (3.18), we further compute

P
(
{σ2k−1 <∞, τh =∞} ∩

{
sup

0≤t≤T
|z(σ2k−1 + t)− z(σ2k−1)| < δ

})
= P({σ2k−1 <∞, τh =∞})

− P
(
{σ2k−1 <∞, τh =∞} ∩

{
sup

0≤t≤T
|z(σ2k−1 + t)− z(σ2k−1)| ≥ δ

})
> 2ε− ε = ε. (3.22)

By (3.21) we hence obtain that

P
(
{σ2k−1 <∞, τh =∞} ∩

{
sup

0≤t≤T
|W (z(σ2k−1 + t))−W (z(σ2k−1))| < ε

})
> ε. (3.23)

Set

Ω̄k =

{
sup

0≤t≤T
|W (z(σ2k−1 + t))−W (z(σ2k−1))| < ε

}
.

Noting that

σ2k(ω)− σ2k−1(ω) ≥ T if ω ∈ {σ2k−1 <∞, τh =∞} ∩ Ω̄k,

we derive from (3.19) and (3.23) that

∞ > ε

∞∑
k=1

E
[
I{σ2k−1<∞,τh=∞}(σ2k − σ2k−1)

]
≥ ε

∞∑
k=1

E
[
I{σ2k−1<∞,τh=∞}∩Ω̄k(σ2k − σ2k−1)

]
≥ εT

∞∑
k=1

P
(
{σ2k−1 <∞, τh =∞} ∩ Ω̄k

)
≥ εT

∞∑
k=1

ε =∞,
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which is a contradiction. So (3.14) must hold.

Step 3. Let us now show that Ker(W ) 6= ∅. From (3.14) and (3.9) we see that there
is an Ω0 ⊂ Ω with P(Ω0) = 1 such that

lim
t→∞

W (z(t, ω)) = 0 and sup
0≤t<∞

|z(t, ω)| <∞ for all ω ∈ Ω0. (3.24)

Choose any ω ∈ Ω0. Then {z(t, ω)}t≥0 is bounded in Rn so there must be an increasing
sequence {tk}k≥1 such that tk →∞ and {z(tk, ω)}k≥1 converges to some z̄ ∈ Rn. Thus

W (z̄) = lim
k→∞

W (z(tk, ω)) = 0,

which implies that z̄ ∈ Ker(W ) whence Ker(W ) 6= ∅.
Step 4. We can now show assertion (3.4). It is clearly sufficient if we could show

that

lim
t→∞

d(z(t, ω), Ker(W )) = 0 for all ω ∈ Ω0. (3.25)

If this is false, then there is some ω̄ ∈ Ω0 such that

lim sup
t→∞

d(z(t, ω̄), Ker(W )) > 0.

Hence there is a subsequence {z(tk, ω̄)}k≥0 of {z(t, ω̄)}t≥0 such that

lim
k→∞

d(z(tk, ω̄), Ker(W )) > ε̄

for some ε̄ > 0. Since {z(tk, ω̄)}k≥0 is bounded, we can find its subsequence {z(t̄k, ω̄)}k≥0

which converges to some ẑ ∈ Rn. Clearly, ẑ 6∈ Ker(W ) so W (ẑ) > 0. But, by (3.24),

W (ẑ) = lim
k→∞

W (z(t̄k, ω̄)) = 0,

a contradiction. Hence (3.25) must hold.

Step 5. Finally, let us show assertion (3.6) under the additional condition (3.5).
Clearly, (3.5) implies that Ker(W ) = {0}. It then follows from (3.4) that

lim
t→0

[x(t)−D(x(t− τ), r(t))] = lim
t→0

z(t) = 0 a.s.

But, by Assumption 2.1,

|x(t)| ≤ |D(x(t− τ), r(t))|+ |x(t)−D(x(t− τ), r(t))|
≤ κ|x(t− τ)|+ |x(t)−D(x(t− τ), r(t))|,

where κ ∈ (0, 1) has been defined above. Letting t→∞ we obtain that

lim sup
t→∞

|x(t)| ≤ κ lim sup
t→∞

|x(t)| a.s.

This, together with (3.10), yields

lim
t→∞
|x(t)| = 0 a.s.

which is the required assertion (3.6). The proof is therefore complete. 2
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4 Rate of Decay

Although Theorem 3.1 shows that the solution will tends to zero asymptotically with
probability 1, it does not give a rate of decay. To reveal the rate of decay, we will slightly
strengthen the condition on function V while, in return, we will not need to use function
W . To state our new theorem, let us introduce one more new notation. Denote by K∞
the family of nondecreasing functions µ : R+ → (0,∞) such that limt→∞ µ(t) =∞.

Theorem 4.1 Let Assumption 2.1 hold. Assume that there are functions V ∈ C2,1(Rn×
R+ × S; R+), γ ∈ L1(R+; R+), U ∈ C(Rn × [−τ,∞); R+) such that

LV (x, y, t, i) ≤ γ(t)− U(x, t) + U(y, t− τ) (4.1)

for (x, y, t, i) ∈ Rn × Rn × R+ × S. Then for any initial data {x(θ) : −τ ≤ θ ≤ 0} = ξ ∈
Cb
F0

([−τ, 0]; Rn) and r(0) = i0 ∈ S, the solution of (2.2) obeys the following properties:

(i) limt→∞ x(t; ξ, i0) = 0 a.s. if there is a function µ ∈ K∞ such that

µ(t)µ(|x|) ≤ V (x, t, i) ∀(x, t, i) ∈ Rn × R+ × S. (4.2)

(ii) lim supt→∞[log(|x(t; ξ, i0)|)/ log(t)] ≤ −α/p a.s. if there are two positive constants p
and α such that

(1 + t)α|x|p ≤ V (x, t, i) ∀(x, t, i) ∈ Rn × R+ × S. (4.3)

(iii) lim supt→∞[t−1 log(|x(t; ξ, i0)|)] ≤ −α/p a.s. if there are two positive constants p
and α such that α < p

τ
log( 1

κ
) and

eαt|x|p ≤ V (x, t, i) ∀(x, t, i) ∈ Rn × R+ × S, (4.4)

where κ = maxi∈S κi ∈ (0, 1).

To prove this theorem, let us present a lemma.

Lemma 4.2 Assume that there is a constant κ ∈ (0, 1) such that

|D(x, i)| ≤ κ|x| ∀(x, i) ∈ Rn × S.

Let ρ : R+ → (0,∞) be a continuous function and x(t) be the solution of equation (2.2)
with initial data ξ ∈ Cb

F0
([−τ, 0]; Rn) and r(0) = i0 ∈ S. Assume that

σ1 := lim sup
t→∞

ρ(t)

ρ(t− τ)
<

1

κ
, (4.5)

and

σ2 := lim sup
t→∞

[
ρ(t)|x(t)−D(x(t− τ), r(t))|

]
<∞ a.s. (4.6)

Then

lim sup
t→∞

[ρ(t)|x(t)|] ≤ σ2

1− κσ1

a.s. (4.7)
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The proof is similar to that of Lemma 3.1 in Mao [18] and is hence omitted. Using
this lemma and Theorem 3.1 we can prove Theorem 4.1 quite easily.

Proof of Theorem 4.1. We first observe that either condition (4.2) or (4.3) or (4.4)
implies that

lim
|x|→∞

(
inf

(t,i)∈R+×S
V (x, t, i)

)
=∞.

So the unique global solution of equation (2.2) for the given initial data follows from
Theorem A.1. Again let us write the solution x(t; ξ, i0) = x(t) for simplicity. Applying
Theorem 3.1 with W = 0 we see that

lim sup
t→∞

V (x(t)−D(x(t− τ), r(t)), t, r(t)) <∞ a.s. (4.8)

(i) By condition (4.2), we then have

lim
t→∞

µ(|x(t)−D(x(t− τ), r(t))|) = 0 a.s.

Since µ ∈ K∞, we must have

lim
t→∞
|x(t)−D(x(t− τ), r(t))| = 0 a.s.

Applying Lemma 4.2 with ρ ≡ 1 (so σ1 = 1 and σ2 = 0), we obtain the required assertion
that limt→∞ x(t) = 0 a.s.

(ii) By condition (4.3), we see from (4.8) that

σ2 := lim sup
t→∞

[(1 + t)
α
p |x(t)−D(x(t− τ), r(t))|] <∞ a.s.

To apply Lemma 4.2, let ρ(t) = (1 + t)
α
p , and then

σ1 := lim sup
t→∞

(1 + t)
α
p

(1 + t− τ)
α
p

= 1 <
1

κ
.

Hence, by Lemma 4.2, we have

lim sup
t→∞

[
(1 + t)

α
p |x(t)|

]
<

σ2

1− κ
a.s.

which implies

lim sup
t→∞

log(|x(t)|)
log(t)

≤ −α
p

a.s.

as required.

Since the proof of (iii) is similar to that of (ii), it is omitted here. The proof is
therefore complete. 2

Let us now establish a new result on the almost surely exponential stability which
will be used in the following section when we discuss the linear NSDDEs.
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Theorem 4.3 Let Assumption 2.1 hold. Assume that there are functions V̄ ∈ C2,1(Rn×
R+ × S; R+) and positive constants p and βj (1 ≤ j ≤ 4) such that β3 > β4,

β1|x|p ≤ V̄ (x, t, i) ≤ β2|x|p (4.9)

for (x, t, i) ∈ Rn × R+ × S and

LV̄ (x, y, t, i) ≤ −β3|x|p + β4|y|p (4.10)

for (x, y, t, i) ∈ Rn × Rn × R+ × S. Then for any initial data {x(θ) : −τ ≤ θ ≤ 0} = ξ ∈
Cb
F0

([−τ, 0]; Rn) and r(0) = i0 ∈ S, the solution of (2.2) obeys the following property that

lim sup
t→∞

1

t
log(|x(t; ξ, i0)|)] ≤ − ᾱ

p
a.s. (4.11)

namely, the trivial solution of equation (2.2) is almost surely exponentially stable, where

ᾱ = sup
{
α ∈ (0, pτ−1 log(1/κ)] : β3 − αβ2 ≥ β4e

ατ
}
. (4.12)

Proof. Fix any α ∈ (0, ᾱ). By (4.12), we have that

α <
p

τ
log(1/κ) and β3 − αβ2 ≥ β4e

ατ . (4.13)

Define V ∈ C2,1(Rn × R+ × S; R+) by

V (x, t, i) =
eαt

β1

V̄ (x, t, i).

It is then clear that

eαt|x|p ≤ V (x, t, i) ∀(x, t, i) ∈ Rn × R+ × S.

Moreover, for (x, y, t, i) ∈ Rn × Rn × R+ × S,

LV (x, y, t, i) =
eαt

β1

[
αV̄ (x, t, i) + LV̄ (x, y, t, i)

]
≤ eαt

β1

[
− (β3 − αβ2)|x|p + β4|y|p

]
≤ −U(x, t) + U(y, t− τ),

where U ∈ C(Rn × [−τ,∞); R+) is defined by

U(x, t) =
β3 − αβ2

β1

eαt|x|p.

An application of Theorem 4.1 shows that the solution of (2.2) obeys

lim sup
t→∞

1

t
log(|x(t; ξ, i0)|)] ≤ −α

p
a.s. (4.14)

Letting α→ ᾱ yields the required assertion (4.11). 2

The following criterion is very convenient in applications as the main condition is in
terms of an M-matrix.
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Theorem 4.4 Let Assumption 2.1 hold. Assume that

(x−D(y, i))Tf(x, y, t, i) + 1
2
|g(x, y, t, i)|2 ≤ αi|x|2 + σi|y|2 (4.15)

for (x, y, t, i) ∈ Rn × Rn × R+ × S, where αi, σi are all real numbers. Define the N × N
matrix Γ̄ = (|γij|κi)N×N and assume that

A := −diag(2α1, 2α2, · · · , 2αN)− Γ− Γ̄ (4.16)

is a nonsingular M-matrix. Set

(q1, · · · , qN)T := A−1~1, (4.17)

where ~1 = (1, · · · , 1)T . Then qi > 0 for all i ∈ S. If, moreover,

2qiσi +
N∑
j=1

|γij|qjκi +
N∑

j=1,j 6=i

γijqjκ
2
i < 1, ∀i ∈ S, (4.18)

then the trivial solution of equation (2.2) is almost surely exponentially stable.

Proof. By the theory of M-matrices (see e.g. [3, 16]), every element ofA−1 is nonnegative.
As it is nonsingular, each row of A−1 must have at least one positive element. We hence
see that qi > 0 for all i ∈ S.

To apply Theorem 4.3, we define V̄ (x, t, i) = qi|x|2. Clearly, V obeys (4.9) with
β1 = mini∈S qi and β2 = maxi∈S qi. Moreover, using (4.15), (4.17), Assumption 2.1 and
noting that γii, i ∈ S are non-positive, we compute the operator

LV (x, y, t, i) = 2qi

[
(x−D(y, i))Tf(x, y, t, i) + 1

2
|g(x, y, t, i)|2

]
+

N∑
j=1

γijqj(x−D(y, i))T (x−D(y, i))

≤ 2qi

[
(x−D(y, i))Tf(x, y, t, i) + 1

2
|g(x, y, t, i)|2

]
+

N∑
j=1

γijqj|x|2 − 2
N∑
j=1

γijqjx
TD(y, i) +

N∑
j=1

γijqj|D(y, i)|2

≤

[
2qiαi +

N∑
j=1

γijqj +
N∑
j=1

|γij|qjκi

]
|x|2

+

[
2qiσi +

N∑
j=1

|γij|qjκi +
N∑

j=1,j 6=i

γijqjκ
2
i

]
|y|2

≤ −|x|2 + β4|y|2,

where

β4 = max
i∈S

[
2qiσi +

N∑
j=1

|γij|qjκi +
N∑

j=1,j 6=i

γijqjκ
2
i

]
.

By (4.18), β4 < 1, the assertion follows hence from Theorem 4.3. 2
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5 Linear NSDDEs with Markovian Switching

Let us now consider the linear autonomous NSDDE with Markovian switching of the form

d[x(t)−D(r(t))x(t− τ)] = [A(r(t))x(t) + F (r(t))x(t− τ)] dt

+
m∑
k=1

[Ck(r(t))x(t) +Gk(r(t))x(t− τ)]dBk(t) (5.1)

on t ≥ 0 with initial data {x(θ) : −τ ≤ θ ≤ 0}= ξ ∈ Cb
F0

([−τ, 0]; Rn). For i ∈ S, we will
write A(i) = Ai, Ck(i) = Cki etc. for simplicity, and they are all n× n-matrices. Let Qi,
i ∈ S, be symmetric positive-definite n × n-matrices and let V (x, t, i) = xTQix. As V is
independent of t, we will write it as V (x, i). Then the operator LV : Rn × Rn × S → R
associated with equation (5.1) has the form

LV (x, y, i) = 2(x−Diy)TQi(Aix+ Fiy) +
m∑
k=1

(Ckix+Gkiy)TQi(Ckix+Gkiy)

+ (x−Diy)T
N∑
j=1

γijQj(x−Diy),

where once again we have dropped t ∈ R+ from LV as it is independent of t. It is easy
to show that

LV (x, y, i) = (xT , yT )Hi

(
x
y

)
+ |y|2, (5.2)

where the symmetric matrix Hi ∈ R2n×2n is defined by

Hi =

(
QiA+ ATQi, −ATi QiD

T
i +QiFi

−DiQiAi + FiQi, −In −DT
i QiFi − FiQiD

T
i

)
+ (Cki, Gki)

TQi(Cki, Gki) + (In,−Di)
T
( N∑
j=1

γijQj

)
(In,−Di), (5.3)

in which In is the n× n identity matrix.

Theorem 5.1 Assume that there are symmetric positive-definite matrices Qi, i ∈ S such
that the matrices Hi defined by (5.3) are all negative-definite and

λ := −max
i∈S

λmax(Hi) >
1
2
. (5.4)

Assume moreover that
κ := max

i∈S
‖Di‖ < 1. (5.5)

Then for any initial data {x(θ) : −τ ≤ θ ≤ 0} = ξ ∈ Cb
F0

([−τ, 0]; Rn) and r(0) = i0 ∈ S,
the solution of (5.1) obeys the property that

lim sup
t→∞

1

t
log(|x(t; ξ, i0)|)] ≤ − ᾱ

2
a.s. (5.6)

where

ᾱ = sup
{
α ∈ (0, pτ−1 log(1/κ)] : λ− α

[
max
i∈S

λmax(Qi)
]
≥ [0 ∨ (1− λ)]eατ

}
. (5.7)
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Proof. It follows from (5.2) that

LV (x, y, i) ≤ λmax(Hi)(|x|2 + |y|2) + |y|2 ≤ −λ|x|2 + [0 ∨ (1− λ)]|y|2.

But, we have clearly that[
min
i∈S

λmin(Qi)
]
|x|2 ≤ V (x, i) ≤

[
max
i∈S

λmax(Qi)
]
|x|2.

The assertion (5.6) now follows immediately from Theorem 4.3. 2

Example 5.2 Let B(t) be a scalar Brownian motion. Let r(t) be a right-continuous
Markov chain taking values in S = {1, 2} with generator

Γ = (γij)2×2 =

(
−0.1 0.1
10 −10

)
.

Assume that B(t) and r(t) are independent. Consider a two-dimensional linear NSDDE
with Markovian switching of the form

d[x(t)−Dx(t− τ)] = A(r(t))x(t)dt+G(r(t))x(t− τ)dB(t) (5.8)

on t ≥ 0, where

D =

(
0.2 0
0 0.2

)
, A(1) = A1 =

(
−8 0
0 −7

)
, A(2) = A2 =

(
2 0
0 1

)
,

G(1) = G1 =

(
0.1 0.2
−0.3 0.4

)
, G(2) = G2 =

(
0.1 0
0 0.1

)
.

By choosing

Q1 =

(
0.1 0
0 0.1

)
, Q2 =

(
4 0
0 5

)
,

the matrices defined by (5.3) become

Hi =

(
QiAi + ATi Qi, −ATi QiD

T
i

−DiQiAi, −I2

)
+ (0, Gi)

TQi(0, Gi) + (I2,−Di)
T
( N∑
j=1

γijQj

)
(I2,−Di).

More precisely,

H1 =


−1.1100 0 0.0820 0

0 −0.9100 0 0.042
0.0820 0 −0.8844 −0.1

0 0.042 −0.1 −0.7804

 , H2 =


−23 0 6.2 0

0 −39 0 8.8
6.2 0 −2.52 0
0 8.8 0 −2.91

 .

Simple computations give that the eigenvalues of H1 and H2 are

(−1.1396,−0.9410,−0.8954,−0.7087) and (−41.0341,−24.7307,−0.8786,−0.7893),

respectively. Hence λ defined by (5.4) is: λ = 0.7087 > 1
2
. By Theorem 5.1, we can

conclude that equation (5.8) is almost surely exponentially stable.
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6 Nonlinear Examples

Let us now discuss a couple of nonlinear examples to illustrate our theory.

Example 6.1 Consider a scalar nonlinear NSDDE

d[x(t)−D(x(t− τ), r(t))] = f(x(t), t, r(t)) + g(x(t− τ), t, r(t))dB(t). (6.1)

Here B(t) is a scalar Brownian and r(t) is a Markov chain on the state space S = {1, 2}
with generator

Γ = (γij)2×2 =

(
−2 2
1 −1

)
.

Of course, they are independent. Moreover, for (x, y, t, i) ∈ R× R× R+ × S,

D(y, i) =

{
0.1y, if i = 1,
−0.1y, if i = 2;

f(x, t, i) =

{
−x3 + x/(1 + t), if i = 1,
−x3 − 2x, if i = 2;

and

g(y, t, i) =

{
|y|1.5/(1 + t), if i = 1,
y2 sin t, if i = 2.

Define V (x, i) = 2x2 for i = 1 but x2 for i = 2. Then the operator LV : R×R×R+×S→ R
takes the forms

LV (x, y, t, 1) = 4(x− 0.1y)(−x3 + x/(1 + t)) + 2|y|3/(1 + t)2

− 4(x− 0.1y)2 + 2(x+ 0.1y)2

and

LV (x, y, t, 2) = 2(x+ 0.1y)(−x3 − 2x) + y4 sin2 t+ 2(x− 0.1y)2 − (x+ 0.1y)2.

By the elementary inequality

aub(1−u) ≤ ua+ (1− u)b, ∀a, b ≥ 0, 0 ≤ u ≤ 1,

it is not very difficult to show that

LV (x, y, t, 1) ≤ c

(1 + t)2
− 2.7x4 − 1.4x2 + 1.1y4 + 0.58y2

and

LV (x, y, t, 2) ≤ −1.85x4 − 2.5x2 + 1.05y4 + 0.51y2,

where c is a positive constant. These imply that

LV (x, y, t, 1) ≤ c

(1 + t)2
− 2.7x4 − 1.2x2 + 1.1y4 + 0.6y2 − 0.1(x− 0.1y)2

and

LV (x, y, t, 2) ≤ −1.85x4 − 2.3x2 + 1.05y4 + 0.53y2 − 0.1(x+ 0.1y)2.
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By defining

γ(t) =
c

(1 + t)2
, U(x, t) = U(x) = 1.85x4 + 1.2x2, W (x) = 0.1x2,

we hence have

LV (x, y, t, i) ≤ γ(t)− U(x) + U(y)−W (x−D(y, i)).

By Theorem 3.1 we can therefore conclude that the solution of equation (5.1) obeys

lim
t→0

x(t) = 0 a.s.

Example 6.2 Let B(t) be a scalar Brownian motion. Let r(t) be a right-continuous
Markov chain taking values in S = {1, 2, 3} with generator

Γ =

 −2 1 1
3 −4 1
1 1 −2

 ,

Assume that B(t) and r(t) are independent. Consider a three-dimensional semi-linear
NSDDE with Markovian switching of the form

d[x(t)− 0.01x(t− τ)] = A(r(t))x(t)dt+ g(x(t− τ), r(t))dB(t), (6.2)

on t ≥ 0. Here

A(1) =

−2 −1 −2
2 −2 1
1 −2 −3

 , A(2) =

 0.5 1 0.5
−0.8 0.5 1
−0.7 −0.9 0.2

 , A(3) =

−0.5 −0.9 −1
1 −0.6 −0.7

0.8 1 −1

 .

Moreover, we assume that |g(y, i)|2 ≤ ρi|y|2 for (y, i) ∈ R3 × S. Set βi = 1
2
λmax(A(i) +

AT (i)) and θi =
√
λmax(A(i)AT (i)). Compute

β1 = −1.2192, β2 = 0.6035, β3 = −0.4753,

and
θ1 = 4.2349, θ2 = 1.6306, θ3 = 1.8040.

Compute furthermore that

(x−D(y, i))TA(i)x+
1

2
|g(y, i)|2

≤ 1

2
λmax(A(i) + AT (i))|x|2 +

1

10
|
√
λmax(A(i)AT (i))|x||y|+ 1

2
|g(y, i)|2

≤ βi|x|2 +
θi
20
|x|2 +

θi
20
|y|2 +

ρi
2
|y|2.

So the parameters used in (4.15) are αi = βi + θi
20

and σi = θi/20 + ρi/2. The matrix
defined by (4.16) becomes

A = −diag(2α1, 2α2, 2α3)− Γ− Γ̄ =

4.3347 −1.01 −1.01
−3.03 2.6715 −1.01
−1.01 −1.01 2.8404

 .
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Compute

A−1 =

0.5079 0.3007 0.2875
0.7444 0.8732 0.5752
0.4453 0.4174 0.6588

 .

Therefore A is a nonsingular M-matrix and

(q1, q2, q3)T := A−1~1 = (1.0961, 2.1928, 1.5215)T .

Condition (4.18) becomes

2q1(θ1/20 + ρ1/2) + 2q1κ1 + q2κ1 + q3κ1 + q2κ
2
1 + q3κ

2
1 < 1,

2q2(θ2/20 + ρ2/2) + 3q1κ2 + 4q2κ2 + q3κ2 + 3q1κ
2
2 + q3κ

2
2 < 1,

2q3(θ3/20 + ρ3/2) + 2q1κ3 + q2κ3 + 2q3κ3 + q1κ
2
3 + q2κ

2
3 < 1.

Noting κ1 = κ2 = κ3 = 0.01, that is

ρ1 < 0.4351, ρ2 < 0.1777, ρ3 < 0.4281. (6.3)

By Theorem 4.4, we can therefore conclude that the trivial solution of equation (6.2) is
almost surely exponentially stable provided (6.3) holds.

A Appendix

In this appendix we shall establish an existence-and-uniqueness theorem of the global
solution to equation (2.2). The following theorem covers all the NSDDEs discussed in
this paper.

Theorem A.1 Let Assumption 2.1 hold. Assume that there are functions V ∈ C2,1(Rn×
R+ × S; R+), γ ∈ L1(R+; R+), U ∈ C(Rn × [−τ,∞); R+) such that

LV (x, y, t, i) ≤ γ(t)− U(x, t) + U(y, t− τ) (A.1)

for (x, y, t, i) ∈ Rn × Rn × R+ × S, and

lim
|x|→∞

[
inf

(t,i)∈R+×S
V (x, t, i)

]
=∞. (A.2)

Then for any initial data ξ ∈ Cb
F0

([−τ, 0]; Rn) and r(0) = i0 ∈ S, equation (2.2) has a
unique global solution x(t) on t ≥ −τ .

Proof. Let β be the bound for ξ. For each integer k ≥ β, define

f (k)(x, y, t, i) = f

(
|x| ∧ k
|x|

x,
|y| ∧ k
|y|

y, t, i

)
,

where we set (|x| ∧ k/|x|)x = 0 when x = 0. Define g(k)(x, y, t, i) similarly. Consider the
NSDDE

d[xk(t)−D(xk(t− τ), r(t))] = f (k)(xk(t), xk(t− τ), t, r(t))dt

+ g(k)(xk(t), xk(t− τ), t, r(t))dB(t) (A.3)
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on t ≥ 0 with initial data ξ and i0. By Assumption 2.1, we observe that f (k) and g(k) satisfy
the global Lipschitz condition and the linear growth condition. By the known existence-
and-uniqueness theorem (see e.g. [17], [25]), there exists a unique global solution xk(t) on
t ∈ [0, τ ] to the equation

xk(t) = ξ(0) +D(ξ(t− τ), r(t))−D(ξ(−τ), i0)

+

∫ t

0

f (k)(xk(s), xk(s− τ), s, r(s))ds+

∫ t

0

g(k)(xk(s), xk(s− τ), s, r(s))dB(s). (A.4)

Once we obtain the unique solution on [0, τ ] we can regard them as the initial data and
consider equation (A.3) on t ∈ [τ, 2τ ]. In this case, equation (A.3) can be written as

xk(t) = ξ(τ) +D(xk(t− τ), r(t))−D(xk(0), r(τ))

+

∫ t

τ

f (k)(xk(s), xk(s− τ), s, r(s))ds+

∫ t

τ

g(k)(xk(s), xk(s− τ), s, r(s))dB(s). (A.5)

Again, by the known existence-and-uniqueness theorem (see e.g. [17], [25]), equation
(A.3) has a unique solution xk(t) on [τ, 2τ ]. Repeating this procedure on intervals [2τ, 3τ ],
[3τ, 4τ ] and so on we obtain the unique solution xk(t) to equation (A.3) on t ≥ −τ .

Let us now define the stopping time

σk = inf{t ≥ 0 : |xk(t)| ≥ k}.

Clearly, |xk(s)| ∨ |xk(s− τ)| ≤ k for 0 ≤ s ≤ σk. Therefore

f (k)(xk(s), xk(s− τ), s, r(s)) = f (k+1)(xk(s), xk(s− τ), s, r(s))

and
g(k)(xk(s), xk(s− τ), s, r(s)) = g(k+1)(xk(s), xk(s− τ), s, r(s)),

on τ ≤ s ≤ σk. These imply

xk(t) = xk(t) = ξ(0) +D(ξ(t− τ), r(t))−D(ξ(−τ), i0)

+

∫ t∧σk

0

f (k+1)(xk(s), xk(s− τ), s, r(s))ds+

∫ t∧σk

0

g(k+1)(xk(s), xk(s− τ), s, r(s))dB(s).

So we have
xk(t) = xk+1(t) if 0 ≤ t ≤ σk.

This implies that σk is increasing in k. Let σ = limk→∞ σk. The property above also
enables us to define x(t) for t ∈ [−τ, σ) as follows

x(t) = xk(t) if− τ ≤ t ≤ σk.

It is clear that x(t) is a unique solution to equation (2.2) for t ∈ [−τ, σ). To complete the
proof, we need to show that P{σ =∞} = 1. By the generalized Itô formula, we have that
for any t > 0,

EV (xk(t ∧ σk)−D(xk(t ∧ σk − τ), r(t ∧ σk)), t ∧ σk, r(t ∧ σk))

=EV (xk(0)−D(ξ(−τ), 0, r(0)) + E
∫ t∧σk

0

L(k)V (xk(s), xk(s− τ), s, r(s))ds, (A.6)
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where operator L(k)V is defined similarly as LV was defined by (2.3) except f and g there
are replaced by f (k) and g(k), respectively. By the definitions of f (k) and g(k), we hence
observe that

L(k)V (xk(s), xk(s− τ), s, r(s)) = LV (xk(s), xk(s− τ), s, r(s)) if 0 ≤ s ≤ t ∧ σk.

Using (A.1), we can then derive easily from (A.6) that

EV (xk(t ∧ σk)−D(xk(t ∧ σk − τ), r(t ∧ σk)), t ∧ σk, r(t ∧ σk))

≤ ζ := EV (ξ(0)−D(ξ(−τ), i0), 0, i0) + E
∫ 0

−τ
U(ξ(θ), θ)dθ +

∫ ∞
0

γ(s)ds. (A.7)

Define, for each u ≥ 0,

µ(u) = inf
{
V (x, t, i) : (x, t, i) ∈ Rn × R+ × S with |x| ≥ u

}
.

By condition (A.2), we note that limu→∞ µ(u) = ∞. On the other hand, for any ω ∈
{σk ≤ t}, we have |x(σk)| = k and |x(σk − τ)| ≤ k so

|xk(t ∧ σk)−D(xk(t ∧ σk − τ)| ≥ (1− κ)k,

where κ = maxi∈S κi ∈ (0, 1). It then follows from (A.7) that

P{σk ≤ t} ≤ ζ

µ((1− κ)k)
.

Letting k →∞, we obtain that P{σ ≤ t} = 0. Since t is arbitrary, we must have

P{σ =∞} = 1

as desired. 2
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