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This paper deals with a class of backward stochastic differential equations with Poisson
jumps and with random terminal times. We prove the existence and uniqueness result
of adapted solution for such a BSDE under the assumption of non-Lipschitzian coefficient.
We also derive two comparison theorems by applying a general Girsanov theorem and
the linearized technique on the coefficient. By these we first show the existence and
uniqueness of minimal solution for one-dimensional BSDE with jumps when its coefficient
is continuous and has a linear growth. Then we give a general Feynman–Kac formula
for a class of parabolic types of second-order partial differential and integral equations
(PDIEs) by using the solution of corresponding BSDE with jumps. Finally, we exploit above
Feynman–Kac formula and related comparison theorem to provide a probabilistic formula
for the viscosity solution of a quasi-linear PDIE of parabolic type.

1. Introduction

Suppose that W T
t = (W 1

t , . . . , W d
t ), t � 0, is a d-dimensional Brownian motion; K T (t) = (K1(t), . . . , Kr(t)), t � 0, is an r-

dimensional stationary Poisson point process taking values in a measurable space (E,B(E)). We denote by NKi (ds,dx),
i = 1, . . . , r, the Poisson counting measure induced by Ki(·) with compensator λ(dx)ds, and by ÑKi (ds,dx) the martingale
measure such that ÑKi (ds,dx) = NKi (ds,dx) − λ(dx)ds, where λ(·) is a σ -finite measure on B(E).

Let (Ω,F, P ) be a complete and standard measurable probability space (cf. N. Ikeda and S. Watanabe [7]) equipped with
a filtration denoted by Ft = σ [W s; s � t] ∨ σ [NK ((0, s], A); s � t, A ∈ B(E)] ∨ N, 0 � t � τ , where N is the all P -null sets;
τ is a stopping time. The following notation will be used in this paper.

• S2
F(0, τ ; Rn) denotes the set of all Ft -adapted RCLL processes X(·) valued in Rn such that E[sup0�t�τ |X(t)|2] < ∞;

• L2
F(0, τ ; Rn(Rn⊗d)) denotes the set of all Ft -adapted processes Y (·) valued in Rn(Rn⊗d) such that E

∫ τ
0 |Y (t)|2 dt < ∞;

• H2
F(0, τ ; Rn⊗r) denotes the set of all P ⊗ B(E) measurable processes Ψt(x) valued in Rn⊗r such that

E

[ τ∫
0

∫
E

∣∣Ψt(x)
∣∣2λ(dx)dt

]
:= E

τ∫
0

∥∥Ψt(·)
∥∥2

dt < ∞,

where P is the σ -algebra generated by all predictable subsets of Ω × [0, τ ];
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• L2
λ(0, τ ; Rn⊗r) denotes the set of all B(E)-measurable functions Φ(·) valued in Rn⊗r such that

‖Φ‖2 =
∫
E

∣∣Φ(x)
∣∣2λ(dx) < ∞.

We shall consider the following backward stochastic differential equation with Poisson jumps and with a random termi-
nal time (BSDE for short):

Yt = ξ +
τ∫

t∧τ

f (s, Ys, Zs, Us,ω)ds −
τ∫

t∧τ

Zs dW s −
τ∫

t∧τ

∫
E

Us(x)ÑK (ds,dx), (1.1)

where the random function f : [0,∞) × Rn × Rn⊗d × L2
λ(Rn⊗r) × Ω → Rn is jointly measurable and Ft -adapted; ξ is

Fτ -measurable and square integrable. If there exists a triplet (Y , Z , U ) ∈ S2
F(0, τ ; Rn) × L2

F(0, τ ; Rn⊗d) × H2
F(0, τ ; Rn⊗r)

satisfying (1.1), we call it an adapted solution to such a BSDE.
In order to guarantee existence and uniqueness of the adapted solution to above BSDE, we have to impose some assump-

tions on the coefficient f . The reader is referred to El Karoui and Mazliak [5] for the general theory of continuous BSDEs,
which are only driven by a multidimensional Brownian motion, to Tang and Li [20], Situ [19], Barles, Buckdahn and Pardoux
[1], Yin and Situ [21], Yin and Wang [22] for the general theory and some applications of BSDEs with Poisson jumps.

The comprehensive applications of BSDEs have motivated many efforts to establish the existence and uniqueness of
adapted solution under general hypotheses on the coefficient. For instance, Peng [14] first introduced monotonic coefficient
and Mao [10] discussed non-Lipschitz coefficient for multidimensional continuous BSDEs. For the one-dimensional case, Lep-
eltier and San Martin [8] proved the existence of a solution to continuous BSDEs with the help of comparison theorem under
the assumption of continuous coefficient. Besides, Pardoux [12] considered multidimensional BSDEs with jumps and showed
an existence theorem of a solution under the monotonicity condition w.r.t. Y and the Lipschitz condition w.r.t. (Z , U ). This
result is also used by Royer [17] for improving a comparison theorem derived by Barles et al. [1].

The comparison theorem is also an important property of BSDEs. We refer to El Karoui, Peng, Quenez [6] for their
applications to finance, to Peng [14,15] for the applications to stochastic control and to Peng [16], Coquet et al. [4] for the
applications to nonlinear expectations. There are much works involving the comparison theorem of continuous BSDEs, see
for instance, Darling and Pardoux [3], Liu and Ren [9] and the above references. However, there are only a few important
results concerned with comparison theorem for BSDEs with jumps. We shall mention here Barles et al. [1] and Pardoux [12],
who use the comparison theorem of BSDEs with jumps to solve integral–partial differential equations and to study nonlinear
expectations and nonlinear martingales with jumps.

The aim of this paper is to study BSDEs with Poisson jumps and random terminal times and to consider their applica-
tions. The first result of this paper is to establish the existence and uniqueness theorem of adapted solution to Eq. (1.1). The
proof is based on the smoothing technique, which makes our conditions on the coefficient f to be weaker than those of
Pardoux [12] and generalizes his result. We then prove two comparison theorems of BSDEs with jumps. It should be noted
that Corollary 3.1 of this paper is similar to Theorem 2.6 in Royer [17]. However, compared with her result, our conditions
on Y and Z are weaker, and indeed ours improves the existing result due to random terminal time, r-dimensional Poisson
point process and the important fact that this paper allows c � −1 but not c > −1 as C1 in Theorem 2.6 of [17].

This paper is organized as follows: in Section 2, we give an existence and uniqueness result of adapted solution to
Eq. (1.1), which also generalizes the corresponding result in Situ and the first author [21]. In Section 3, we prove two
comparison theorems of BSDEs by means of a general Girsanov theorem and a linearized treatment on the coefficients.
In Section 4, we focus on some applications of the comparison theorem of BSDEs. Firstly, we prove the existence and
uniqueness of minimal solution for one-dimensional BSDE with Poisson jumps under the assumptions that the coefficient
is continuous and has a linear growth. Then we give a probabilistic formula for a class of quasi-linear second-order partial
differential and integral equations (PDIEs) by using the solutions of BSDEs with Poisson jumps, which is called a general
Feynman–Kac formula. Finally, we exploit above Feynman–Kac formula and related comparison theorem to provide a prob-
abilistic formula for the viscosity solution of a quasi-linear PDIE of parabolic type.

2. Existence and uniqueness of adapted solutions

This section will present two existence and uniqueness results of adapted solutions to BSDEs with Poisson jumps and
with random terminal times. The first one, that is Lemma 2.1, due to Situ and the first author [21], is needed in our
subsequent discussion.

Lemma 2.1. Suppose that the following conditions hold:

(i) E(
∫ τ

0 | f (t,0,0,0,ω)|dt)2 < ∞, ξ ∈ Fτ , E|ξ |2 < ∞;
(ii) For any Q i = (Yi, Zi, Ui) ∈ Rn × Rn⊗d × L2

λ(Rn⊗r), i = 1,2, t � 0,∣∣ f (t, Q 1,ω) − f (t, Q 2,ω)
∣∣� u1(t)|Y1 − Y2| + u2(t)

[|Z1 − Z2| + ‖U1 − U2‖
]
,



where u1(t) and u2(t) are nonnegative, deterministic functions and satisfy

∞∫
0

u1(t)dt +
∞∫

0

u2(t)
2 dt < ∞. (2.1)

Then (1.1) has a unique solution.

The next theorem generalizes the result of Lemma 2.1 to the case where f is continuous but not Lipschitz continuous.
We impose some assumptions as follows:

(H1) f (t, Y , Z , U ,ω) = f1(t, Y , Z , U ,ω) + f2(t, Y , Z , U ,ω);
(H2) f1(t, Y , Z , U ,ω) is continuous in (Y , Z , U ). Moreover,∣∣ f1(t, Y , Z , U ,ω)

∣∣� u1(t)
(
1 + |Y |), (2.2)

(Y1 − Y2) · ( f1(t, Y1, Z1, U1,ω) − f1(t, Y2, Z2, U2,ω)
)

� u1(t)ρ
(|Y1 − Y2|2

)+ u2(t)|Y1 − Y2|
(|Z1 − Z2| + ‖U1 − U2‖

)
, (2.3)∣∣ f1(t, Y , Z , U1,ω) − f1(t, Y , Z , U2,ω)

∣∣� u2(t)‖U1 − U2‖; (2.4)

(H3) | f2(t,0,0,0,ω)| � u1(t), and for Q i = (Yi, Zi, Ui), i = 1,2,∣∣ f2(t, Q 1,ω) − f2(t, Q 2,ω)
∣∣� u1(t)|Y1 − Y2| + u2(t)

(|Z1 − Z2| + ‖U1 − U2‖
);

(H4) ξ ∈ Fτ , E|ξ |2 < ∞;

where u1(t) and u2(t) satisfy (2.1); ρ(u) is a nondecreasing, continuous and concave function from R+ to R+ such that
ρ(0) = 0, ρ(u) � 0, for u � 0 and

∫
0+ du

ρ(u)
= ∞.

Theorem 2.1. Under assumptions of (H1)–(H4), (1.1) has a unique solution.

The proof of Theorem 2.1 will be given in an appropriate position. As a preparation, we first derive a priori estimate.

Lemma 2.2. Let (2.2) of (H2) and (H3) be satisfied. Assume that there exists a constant k0 � 0 such that |ξ | � k0 a.s. If (Y , Z , U ) is a
solution of (1.1), then for each t ∈ [0, τ ],

|Yt | � N0, P -a.s.,

where N0 � 0 is a constant depending on
∫∞

0 (u1(t) + u2(t)2)dt and k0 only.

Proof. By Itô’s formula, we can obtain that (Q s := (Ys, Zs, Us))

|Yt∧τ |2 +
τ∫

t∧τ

|Zs|2 ds +
τ∫

t∧τ

∫
E

∣∣Us(x)
∣∣2NK (ds,dx) = |ξ |2 +

τ∫
t∧τ

2Ys · f (s, Q s,ω)ds −
τ∫

t∧τ

dMs,

where

Mt = 2

t∫
0

Ys · Zs dW s + 2

t∫
0

∫
E

Ys · Us(x)ÑK (ds,dx)

is a uniformly integrable martingale from the Burkhoder–Davis–Gundy inequality. By this, (H3) and (2.2), together with
elementary algebraic inequality, one obtains that

|Yt∧τ |2 � EFt∧τ

[
|Yt∧τ |2 + 1

2

τ∫
t∧τ

|Zs|2 ds + 1

2

τ∫
t∧τ

‖Us‖2 ds

]

� EFt∧τ

[
|ξ |2 + 2

∞∫
0

u1(s)ds +
τ∫

t∧τ

(
6u1(s) + 4u2(s)2)|Ys|2 ds

]

� k2
0 + 2

∞∫
u1(s)ds +

∞∫ (
6u1(s) + 4u2(s)2)EFt∧τ |Ys∧τ |2 ds,
0 t



where EFt [ξ ] = E[ξ |Ft]. By virtue of Gronwall’s lemma, we can easily get

|Yt∧τ |2 �
(

k2
0 + 2

∞∫
0

u1(s)ds

)
exp

( ∞∫
0

(
6u1(s) + 4u2(s)2)ds

)
:= N0. �

Proof of Theorem 2.1. Uniqueness: Let (Y 1, Z 1, U 1) and (Y 2, Z 2, U 2) be two solutions of (1.1). Then applying Itô’s formula
to |Y 1

t − Y 2
t |2, we have

At := E
∣∣Y 1

t∧τ − Y 2
t∧τ

∣∣2 + 1

2
E

τ∫
t∧τ

∣∣Z 1
s − Z 2

s

∣∣2 ds + 1

2
E

τ∫
t∧τ

∥∥U 1
s − U 2

s

∥∥2
ds

� E

τ∫
t∧τ

[(
2u1(s) + 16u2(s)2)ρ1

(∣∣Y 1
s − Y 2

s

∣∣2)]ds

= E

∞∫
t

[(
2u1(s) + 16u2(s)2)ρ1

(∣∣Y 1
s∧τ − Y 2

s∧τ

∣∣2)]ds

�
∞∫

t

[(
2u1(s) + 16u2(s)2)ρ1(As)

]
ds,

where ρ1(u) = ρ(u) + u has the same property as ρ(u). Therefore we have At = 0, t ∈ [0, τ ], by the Bahari inequality (see
Mao [11, pp. 45–46] or Situ [18]), and the uniqueness follows.

Existence: The proof will be divided into three steps.
Step 1. Assume that (H1)–(H4) hold except that (2.2) is replaced with the following∣∣ f1(t, Y , Z , U ,ω)

∣∣� u1(t). (2.5)

Let

f n
1 (t, Y , Z , U ) =

∫
Rn×Rn⊗d

f1
(
t, Y − n−1Y , Z − n−1 Z , U

)
J (Y , Z)dY dZ ,

where J (Y , Z) = J1(Y ) J2(Z), and J1(Y ) is defined, for all Y ∈ Rn , as

J1(Y ) =
{

C1 exp(−(1 − |Y |2)−1) for |Y | < 1,

0 otherwise,

such that the constant C1 satisfies
∫

Rn J1(Y )dY = 1. J2(Z) is similarly defined for any Z ∈ Rn⊗d , which can be viewed as
an (n · d)-dimensional vector. It is easy to check that f n(t, Y , Z , U ) = f n

1 (t, Y , Z , U ) + f2(t, Y , Z , U ) satisfies (i) and (ii) of
Lemma 2.1 but with different u1(t) and u2(t), which depend on n and satisfy (2.1). Hence by Lemma 2.1 the BSDE

Y n
t = ξ +

τ∫
t∧τ

f n(s, Y n
s , Zn

s , Un
s

)
ds −

τ∫
t∧τ

Zn
s dW s −

τ∫
t∧τ

∫
E

Un
s (x)ÑK (ds,dx) (2.6)

has a unique solution (Y n, Zn, Un). We first note, from (2.5) and (H3), that∣∣ f n(t, Y , Z , U )
∣∣� 2u1(t) + u1(t)|Y | + u2(t)

[|Z | + ‖U‖].
Therefore, in analogy with Lemma 1 in Situ [19], we can easily deduce that

sup
n

E

(
sup

0�t�τ

∣∣Y n
t

∣∣2 +
τ∫

0

∣∣Zn
t

∣∣2 dt +
τ∫

0

∥∥Un
t

∥∥2
dt

)
� k1 < ∞, (2.7)

where k1 � 0 is a constant only depending on
∫∞

(u1(t) + u2(t)2)dt and E|ξ |2.
0



Applying Itô’s formula to |Y m
t − Y n

t |2 yields that

E

(∣∣Y n
t∧τ − Y m

t∧τ

∣∣2 +
τ∫

t∧τ

∣∣Zn
s − Zm

s

∣∣2 ds +
τ∫

t∧τ

∥∥Un
s − Um

s

∥∥2
ds

)

= 2E

τ∫
t∧τ

(
Y n

s − Y m
s

) · ( f n(s, Y n
s , Zn

s , Un
s

)− f m(s, Y m
s , Zm

s , Um
s

))
ds

� 2E

τ∫
t∧τ

∫
Rn×Rn⊗d

[
u1(s)ρ

(∣∣Y n
s − Y m

s − (n−1 − m−1)Y ∣∣2)+ u2(s)
∣∣Y n

s − Y m
s − (n−1 − m−1)Y ∣∣

× (∣∣Zn
s − Zm

s − (n−1 − m−1)Z
∣∣+ ∥∥Un

s − Um
s

∥∥)+ 2u1(s)
∣∣n−1 − m−1

∣∣|Y |] J (Y , Z)dY dZ ds

+ E

τ∫
t∧τ

[
2u1(s)

∣∣Y n
s − Y m

s

∣∣2 + 2u2(s)
∣∣Y n

s − Y n
s

∣∣(∣∣Zn
s − Zm

s

∣∣+ ∥∥Un
s − Um

s

∥∥)]ds

� k2 E

τ∫
t∧τ

∫
Rn

(
u1(s) + u2(s)2)ρ1

(∣∣Y n
s − Y m

s − (n−1 − m−1)Y ∣∣) J1(Y )dY ds

+ k2 E

τ∫
t∧τ

(
u1(s) + u2(s)2)∣∣Y n

s − Y m
s

∣∣2 ds + k2
(
n−1 + m−1)+ 1

2
E

τ∫
t∧τ

(∣∣Zn
s − Zm

s

∣∣2 + ∥∥Un
s − Um

s

∥∥2)
ds,

where k2 � 0 is a constant, and we have used (2.7) and the fact of that∫
Rn×Rn⊗d

(|Y |2 + |Z |2) J (Y , Z)dY dZ < ∞.

Hence

E

(∣∣Y n
t∧τ − Y m

t∧τ

∣∣2 + 1

2

τ∫
t∧τ

∣∣Zn
s − Zm

s

∣∣2 ds + 1

2

τ∫
t∧τ

∥∥Un
s − Um

s

∥∥2
ds

)

� k2

∞∫
t

∫
Rn

(
u1(s) + u2(s)2)ρ1

(
E
∣∣Y n

s∧τ − Y m
s∧τ − (n−1 − m−1)Y ∣∣2)

+ k2

∞∫
t

(
u1(s) + u2(s)2)E∣∣Y n

s∧τ − Y m
s∧τ

∣∣2 ds + k2
(
n−1 + m−1).

It is easy to deduce by the Fatou lemma that

lim sup
n,m→∞

E
∣∣Y n

t∧τ − Y m
t∧τ

∣∣2 + 1

2
lim sup
n,m→∞

E

τ∫
t∧τ

(∣∣Zn
s − Zm

s

∣∣2 + ∥∥Un
s − Um

s

∥∥2)
ds

� k2

∞∫
t

(
u1(s) + u2(s)2)ρ2

(
lim sup
n,m→∞

E
∣∣Y n

s∧τ − Y m
s∧τ

∣∣2)ds,

where ρ2(u) = ρ1(u) + u. We then apply the Bahari’s inequality to obtain that

lim sup
n,m→∞

E
∣∣Y n

t∧τ − Y m
t∧τ

∣∣2 = 0

and

lim sup
n,m→∞

E

τ∫ (∣∣Zn
t − Zm

t

∣∣2 + ∥∥Un
t − Um

t

∥∥2)
dt = 0.
0



These, together with the BDG inequality, yield

lim
n,m→∞ E sup

0�t�τ

∣∣Y n
t − Y m

t

∣∣2 = 0.

By the completeness of Banach space, we know that there exists a unique (Y , Z , U ) ∈ S2
F(0, τ ; Rn) × L2

F(0, τ ; Rn⊗d) ×
H2

F(0, τ ; Rn⊗r) such that as n → ∞,

E sup
0�t�τ

∣∣Y n
t − Yt

∣∣2 → 0,

E

τ∫
0

∣∣Zn
t − Zt

∣∣2 dt → 0,

E

τ∫
0

∥∥Un
t − Ut

∥∥2
dt → 0.

Therefore we can take a subsequence {nk} of {n}, denote it by {n} again such that almost surely for (t,ω) ∈ [0,∞) × Ω ,(
Y n

t∧τ , Zn
t∧τ , Un

t∧τ

)→ (Yt∧τ , Zt∧τ , Ut∧τ ) in Rn × Rn⊗d × L2
λ

(
Rn⊗r).

Hence by the continuity of f in (Y , Z , U ), (2.5), (2.7), (H3) and the Lebesgue domination convergence theorem, we have
that

E

τ∫
0

∣∣ f n(t, Y n
t , Zn

t , Un
t

)− f (t, Yt , Zt , Ut)
∣∣dt → 0, n → ∞.

It is easily seen that (Y , Z , U ) is a solution of (1.1) by taking the limit on both sides of (2.6).
Step 2. Assume that (H1)–(H3) hold, and there exists a constant k0 � 0 such that |ξ | � k0. In this case, similar to Corol-

lary 1 in Situ [19], we define, for each natural number N ,

f N
1 (t, Y , Z , U ,ω) = f1(t, Y , Z , U ,ω) · W N (Y ),

f N
2 (t, Y , Z , U ,ω) = f2(t, Y , Z , U ,ω),

where W N (Y ) ∈ C∞
0 (Rn) is defined as

W N (Y ) =
{

1 for |Y | � N + 2,

0 for |Y | � N + 3,∣∣W N (Y1) − W N (Y2)
∣∣� k̄0|Y1 − Y2| for all Y1, Y2 ∈ Rn,

and satisfies 0 � W N (Y ) � 1, where k̄0 is a positive constant. It is not hard to check that f N (t, Y , Z , U ) satisfies (H1)–(H3)
and (2.5), but with the following

ū1(t) = u1(t)(1 + N + 3)(k̄0 + 1),

ū2(t) = u2(t),

ρ̄(u) = ρ1(u),

for (2.3) and (2.5). Then by step 1 and Lemma 2.2 there exists (Y N , Z N , U N ) to solve (1.1) with f N as the coefficient.
Moreover,∣∣Y N

t∧τ

∣∣� N0 + 2 for all N = 1,2, . . . .

Hence (Y N0 , Z N0 , U N0 ) is a solution of (1.1).
Step 3. Assume that (H1)–(H4) hold. Let ξn = ξ1|ξ |�n , then by step 2 there exists a triplet (Y n, Zn, Un), which is a solution

of following BSDE:

Y n
t = ξn +

τ∫
t∧τ

f
(
s, Y n

s , Zn
s , Un

s

)
ds −

τ∫
t∧τ

Zn
s dW s −

τ∫
t∧τ

∫
E

Un
s (x)ÑK (ds,dx). (2.8)

By Itô’s formula and the BDG inequality, it is not hard to prove that (Y n, Zn, Un) is a Cauchy sequence in S2
F(0, τ ; Rn) ×

L2
F(0, τ ; Rn⊗d) × H2

F(0, τ ; Rn⊗r). Hence there exists a limit (Y , Z , U ). Letting n → ∞ on both sides of (2.8), we easily see
that (Y , Z , U ) is a solution of (1.1). �



Remark 2.1. In the case of τ � T , T > 0, it is clear that Theorem 2.1 generalizes the corresponding result in Pardoux [12] or
in Royer [17] by taking u1(t) = u2(t) = K , K � 0, for t � T and u1(t) = u2(t) = 0 for t > T . When τ = ∞ or τ < ∞ a.s., it is
known that Pardoux’s existence and uniqueness result does not work, so Theorem 2.1 improves his result.

3. The comparison theorem of BSDEs with jumps

In this section we turn our attention to the comparison theorem of BSDEs with Poisson jumps. It should be noted that
we need impose stronger assumptions on the coefficients than that of continuous BSDEs. Consider the following BSDEs
(n = 1):

Y 1
t = ξ1 +

τ∫
t∧τ

f 1(s, Y 1
s , Z 1

s , U 1
s

)
ds −

τ∫
t∧τ

Z 1
s dW s −

τ∫
t∧τ

∫
E

U 1
s (x)ÑK (ds,dx) (3.1)

and

Y 2
t = ξ2 +

τ∫
t∧τ

f 2(s, Y 2
s , Z 2

s , U 2
s

)
ds −

τ∫
t∧τ

Z 2
s dW s −

τ∫
t∧τ

∫
E

U 2
s (x)ÑK (ds,dx). (3.2)

Assume that (H1)–(H4) hold for f i and ξ i , i = 1,2. Then from Theorem 2.1, (Y 1, Z 1, U 1) and (Y 2, Z 2, U 2) are the unique
solutions of (3.1) and (3.2), respectively.

Theorem 3.1. Suppose that f i and ξ i , i = 1,2, satisfy the following conditions with probability one:

(1) f 1(t, Y , Z , U ) � f 2(t, Y , Z , U );
(2) ξ1 � ξ2;
(3) f 1(t, Y , Z , U ,ω) = h(t, Y , Z ,ω) + ∫E ct(x,ω)Ut(x)T λ(dx),∣∣h(t, Y1, Z1,ω) − h(t, Y2, Z2,ω)

∣∣� u1(t)|Y1 − Y2| + u2(t)|Z1 − Z2|,
where

∫
E |ct(x,ω)|2λ(dx) � u2(t)2 and ci

t(x,ω), i = 1,2, . . . , r, is the ith component of ct(x,ω) satisfying ci
t(x,ω) � −1 a.s.

Then, with probability one, we have

Y 1
t � Y 2

t for all t ∈ [0, τ ].

Before giving the proof of Theorem 3.1, we will provide an example similar to one chosen by Royer [17] to illustrate that
condition (3) of Theorem 3.1 for f 1 with respect to U cannot be weakened as the usual Lipschitz condition.

Example 3.1. Consider two BSDEs driven by one-dimensional Poisson process with following coefficients:

f 1(t, Y , Z , U ,ω) = f 2(t, Y , Z , U ) = u2(t) ·
[∫

E0

∣∣Ut(x)
∣∣2λ(dx)

] 1
2

,

where E0 ⊆ E , 0 < λ(E0) < 1; u2(t) is a function satisfying (2.1), but there exists T > 0 such that u2(t) = 1 as 0 � t � T .
It is easy to check by the Minkowski inequality that∣∣ f 1(t, Y , Z , U1) − f 1(t, Y , Z , U2)

∣∣� u2(t)‖U1 − U2‖.
Clearly, (0,0,0) is the unique solution to BSDE (3.2) with ξ2 = 0. If we set ξ1 = −αN([0, T ], E0), α > 0, then

(Yt , Zt , Ut) = (−αN
([0, t], E0

)+ α
[√

λ(E0) − λ(E0)
]
(T − t),0,−α1E0 (x)

) · 1[t�T ]

is the unique solution to (3.1) with ξ1 as the terminal value. However,

P (Yt > 0) > 0 for any t ∈ [0, T ),

which contradicts the comparison theorem.
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Proof of Theorem 3.1. Let (Ŷt , Ẑt , Ût) := (Y 1
t − Y 2

t , Z 1
t − Z 2

t , U 1
t − U 2

t ), then it satisfies the BSDE of following form:

Ŷt = Y +
τ∫

t∧τ

(
as(ω)Ŷ s + bs(ω) Ẑ T

s +
∫
E

cs(x,ω)Û T
s (x)λ(dx) + f0(s,ω)

)
ds −

τ∫
t∧τ

Ẑ s dW s −
τ∫

t∧τ

∫
E

Û s(x)ÑK (ds,dx), (3.3)

where

Y = ξ1 − ξ2 � 0,

at(ω) = 1[Ŷt �=0]
(
h
(
t, Y 1

t , Z 1
t ,ω

)− h
(
t, Y 2

t , Z 1
t ,ω

))
(Ŷt)

−1,

b1t(ω) = 1[ Ẑ1t �=0]
(
h
(
t, Y 2

t , Z 1
1t , . . . , Z 1

dt

)− h
(
t, Y 2

t , Z 2
1t , . . . , Z 1

dt

))
( Ẑ1t)

−1,

bit(ω) = 1[ Ẑ it �=0]
(
h
(
t, Y 2

t , Z 2
1t , . . . , Z 1

it , . . . , Z 1
dt

)− h
(
t, Y 2

t , Z 2
1t , . . . , Z 2

it, . . . , Z 1
dt

)) · ( Ẑ it)
−1, i = 2, . . . ,d,

f0(t,ω) = f 1(t, Y 2
t , Z 2

t , U 2
t ,ω

)− f 2(t, Y 2
t , Z 2

t , U 2
t ,ω

)
� 0.

We first assume that ci
t(x,ω) > −1 a.s., i = 1,2, . . . , r. For any 0 � T < ∞, set

dP T =
[

exp

( T∫
0

bsdW s − 1

2

T∫
0

|bs|2 ds

) ∏
0<t�T

r∏
i=1

(
1 +

∫
E

ci
t(x,ω)NKi

({t},dx
))

exp

(
−

r∑
i=1

T∫
0

∫
Z

ci
t(x,ω)λ(dx)ds

)]
dP

:= ZT dP .

Then by Girsanov transformation theorem, there exists a probability measure P defined on the standard measurable space
(Ω,F) such that P |FT = P T , and

W t = Wt −
t∫

0

bs(ω)ds

is a Brownian motion under probability measure P ;

N K (dx,dt) = ÑK (dx,dt) − ct(x,ω)λ(dx)dt

is a P -martingale measure. Hence (3.3) can be rewritten as:

Ŷt = Y +
τ∫

t∧τ

(
as(ω)Ŷ s + f0(s,ω)

)
ds −

τ∫
t∧τ

Ẑ s dW s −
τ∫

t∧τ

∫
E

Û s(x)N K (ds,dx).

An application of Itô’s formula yields that

Ŷt∧τ e
∫ t∧τ

0 as(ω)ds = E P [Ŷt∧τ e
∫ t∧τ

0 as(ω)ds
∣∣Ft∧τ

]= E P

[(
e
∫ τ

0 as(ω)dsY +
τ∫

t∧τ

e
∫ s

0 ar (ω)dr f0(s,ω)ds

)∣∣∣∣Ft∧τ

]
� 0,

This implies that Y 1
t � Y 2

t , ∀t ∈ [0, τ ], P -a.s., and the required conclusion follows.
Assume that ci

t(x,ω) � −1, i = 1,2, . . . , r. For this case, we can define

cin
t (x,ω) = ci

t(x,ω) + |ci
t(x,ω)|

n
.

Then by Lemma 2.1, there exists a unique triplet (Ŷ n
t , Ẑn

t , Ûn
t ) solving the following BSDE:

Ŷ n
t = Y +

τ∫
t∧τ

(
as(ω)Ŷ n

s + bs(ω)
(

Ẑn
s

)T +
∫
E

cn
s (x,ω)

(
Ûn

s

)T
λ(dx) + f0(s,ω)

)
ds −

τ∫
t∧τ

Ẑn
s dW s −

τ∫
t∧τ

∫
E

Ûn
s (x)ÑK (ds,dx).

Noting that cin
t (x,ω) > −1, by above what have just proved, we immediately get

Ŷ n
t � 0, ∀t ∈ [0, τ ].

Further, by the uniqueness of solution to (3.3), and letting n → ∞, we have

Y 1
t � Y 2

t , ∀t ∈ [0, τ ] P -a.s.

The proof is complete. �



Remark 3.1. Checking the proof of Theorem 3.1, we easily find that if (1) and (2) hold, but f 2(t, Y , Z , U ,ω) satisfies the
condition (3), then Theorem 3.1 holds true.

Corollary 3.1. Let (1) and (2) of Theorem 3.1 be satisfied. Assume further that f 1 (or f 2) satisfies the following conditions with
probability one:∣∣ f 1(t, Y , Z , U1,ω) − f 1(t, Y , Z , U2,ω)

∣∣� ∣∣∣∣ ∫
E

ct(x,ω)
(
U 1

t (x) − U 2
t (x)

)
λ(dx)

∣∣∣∣,
∣∣ f 1(t, Y1, Z1,ω) − f 1(t, Y2, Z2,ω)

∣∣� u1(t)|Y1 − Y2| + u2(t)|Z1 − Z2|, (3.4)

where ct(x,ω) satisfies the same condition as that in Theorem 3.1. Then we have

Y 1
t � Y 2

t for all t ∈ [0, τ ] a.s.

Proof. Similarly, (Ŷt , Ẑt , Ût) := (Y 1
t − Y 2

t , Z 1
t − Z 2

t , U 1
t − U 2

t ) satisfies the following BSDE:

Ŷt = Y +
τ∫

t∧τ

(
as(ω)Ŷ s + bs(ω) Ẑ T

s +
∫
E

cs(x,ω)Û T
s (z)λ(dx) + f0(s,ω)

)
ds

−
τ∫

t∧τ

Ẑ s dW s −
τ∫

t∧τ

∫
E

Û s(x)ÑK (ds,dx), (3.5)

where

Y = ξ1 − ξ2 � 0,

at(ω) = 1[Ŷt �=0]
(

f 1(t, Y 1
t , Z 1

t , U 1
t

)− f 1(t, Y 2
t , Z 1

t , U 1
t

))
(Ŷt)

−1,

b1t(ω) = 1[ Ẑ1t �=0]
(

f 1(t, Y 2
t , Z 1

1t , . . . , Z 1
dt, U 1

t

)− f 1(t, Y 2
t , Z 2

1t , . . . , Z 1
dt, U 1

t

))
( Ẑ1t)

−1,

bit(ω) = 1[ Ẑ it �=0]
(

f 1(t, Y 2
t , Z 2

1t , . . . , Z 1
it , . . . , Z 1

dt, U 1
t

)− f 1(t, Y 2
t , Z 2

1t , . . . , Z 2
it, . . . , Z 1

dt, U 1
t

))
( Ẑ it)

−1, i = 2,3, . . . ,d,

ĉ1
t (z,ω) = 1[∫E c1

t (x,ω)Û1t (x)λ(dx)�=0]
(

f 1(t, Y 2
t , Z 2

t , U 1
1t , . . . , U 1

rt

)− f 1(t, Y 2
t , Z 2

t , U 2
1t, . . . , U 1

rt

))(∫
E

c1t(x,ω)Û1t(x)λ(dx)

)−1

,

ĉi
t(z,ω) = 1[∫E ci

t (x,ω)Û it (z)λ(dx)�=0]
(

f 1(t, Y 2
t , Z 2

t , U 2
1t, . . . , U 1

it , . . . , U 1
rt

)
− f 1(t, Y 2

t , Z 2
t , U 2

1t , . . . , U 2
it , . . . , U 1

rt

))(∫
E

ci
t(x,ω)Û it(x)λ(dx)

)−1

,

c̃i
t(x,ω) = ĉi

t(x,ω)ci
t(x,ω),

∣∣ĉi
t(x,ω)

∣∣� 1, i = 1,2, . . . , r,

f0(t,ω) = f 1(t, Y 2
t , Z 2

t , U 2
t ,ω

)− f 2(t, Y 2
t , Z 2

t , U 2
t ,ω

)
� 0.

Note that (3.5) has a unique zero solution from Lemma 2.1 when Y = f0 = 0. Hence by Theorem 3.1, we have

Y 1
t � Y 2

t for all t ∈ [0, τ ] a.s. �
Remark 3.2. It is easily seen from the proof of Corollary 3.1 that if (1) or (3) are replaced with f 1(t, Y , Z , U ) < f 2(t, Y , Z , U )

or ξ1 < ξ2, then Y 1
t < Y 2

t , ∀t ∈ [0, τ ] a.s.

4. Some applications

4.1. The minimal solution of BSDE with Poisson jumps

This subsection is devoted to the applications of the comparison theorem for BSDEs with Poisson jumps. We will show
an existence and uniqueness result for a BSDE with jumps and with continuous coefficient. Actually, the solution of such a
BSDE is a minimal one.

Lemma 4.1. Suppose that f : [0,∞) × R × R1⊗d × L2
λ(R1⊗r) × Ω → R is jointly continuous in (Y , Z , U ) ∈ R × R1⊗d × L2

λ(R1⊗r)

with the properties of (3.4) and



∣∣ f (t, Y , Z , U ,ω)
∣∣� u1(t)

(
1 + |Y |)+ u2(t)

(|Z | + ‖U‖). (4.1)

Let

f n(t, Y , Z , U ,ω) = inf
(X,Z)∈R×Rd

{
f (t, X, Z , U ,ω) + nu1(t)|X − Y | + nu2(t)|Z − Z |},

then f n is still Ft−adapted and satisfies:

(1) | f n(t, Y , Z , U ,ω)| � u1(t)(1 + |Y |) + u2(t)(|Z | + ‖U‖), f n(t, Y , Z , U ,ω) � f n+1(t, Y , Z , U ,ω) � f (t, Y , Z , U ,ω), ∀n ∈ N;
(2) | f n(t, Y1, Z1, U ,ω) − f n(t, Y2, Z2, U ,ω)| � u1(t)|Y1 − Y2| + u2(t)|Z1 − Z2|;
(3) (3.4) still holds true;
(4) If (Yn, Zn, Un) → (Y , Z , U ), then f n(t, Yn, Zn, Un) → f (t, Y , Z , U ).

Proof. The adaptability of f n is obvious. In analogy with Lemma 2 in [8], we can easily deduce that (1) and (2). (3) follows
from (3.4) and the fact of∣∣ f n(t, Y , Z , U1) − f n(t, Y , Z , U2)

∣∣� sup
X,Z

∣∣ f (t, X, Z , U1) − f (t, X, Z , U2)
∣∣.

It suffices to show (4). Similar to Lemma 2 in [8], we can take a sequence (Xn, Zn) such that

f n(t, Yn, Zn, Un) � f (t, Xn, Zn, Un) + nu1(t)|Xn − Yn| + nu2(t)|Zn − Zn| − 1

n

� −u1(t)
(
1 + |Yn|)− u2(t)

(|Zn| + ‖Un‖)− 1

n
+ (n − 1)u1(t)|Xn − Yn| + (n − 1)u2(t)|Zn − Zn|, (4.2)

which implies that

(n − 1)u1(t)|Xn − Yn| + (n − 1)u2(t)|Zn − Zn| � 2u1(t)
(
1 + |Yn|)+ 2u2(t)

(|Zn| + ‖Un‖)+ 1

n

and

lim sup
n→∞

nu1(t)|Xn − Yn| + lim sup
n→∞

nu2(t)|Zn − Zn| < ∞.

Therefore

lim
n→∞ Xn = Y , lim

n→∞ Zn = Z .

These together with (1) and (4.2) give (4), and the proof is complete. �
Theorem 4.1. Under the assumptions of Lemma 4.1 for f , BSDE (1.1) has a minimal solution. Furthermore, if (2.3) is satisfied, then the
solution is unique.

Proof. We first consider the following BSDE:

ζt = ξ +
τ∫

t∧τ

h(s, ζs, ηs, θs,ω)ds −
τ∫

t∧τ

ηs dW s −
τ∫

t∧τ

∫
E

θs(x)ÑK (ds,dx), (4.3)

where

h(t, ζ, η, θ,ω) = u1(t)
[
1 + |ζ |]+ u2(t)

[|η| + ‖θ‖].
By Lemma 2.1, there exists a unique solution (ζ,η, θ) to (4.3). Next, we consider a sequence of BSDEs of following

Y n
t = ξ +

τ∫
t∧τ

f n(s, Y n
s , Zn

s , Un
s

)
ds −

τ∫
t∧τ

Zn
s dW s −

τ∫
t∧τ

∫
E

Un
s (x)ÑK (ds,dx). (4.4)

Then by Lemmas 4.1 and 2.1, (4.4) has a unique solution. Furthermore, by Corollary 3.3, we have

Y 1
t � · · · � Y n

t � Y n+1
t � ζt a.s.

It is not difficult to deduce by the BDG inequality that



E sup
0�t�τ

(∣∣Y 1
t

∣∣2 + |ζt |2
)+ E

τ∫
0

(∣∣Q 1
t

∣∣2 + |ηt |2 + ∥∥P 1
t

∥∥2 + ‖θt‖2)dt � C,

where C is a positive constant only depending on
∫∞

0 (u1(t) + u2(t)2)dt and E|ξ |2.
Also

E sup
n

sup
0�t�τ

∣∣Y n
t

∣∣2 � E sup
0�t�τ

(∣∣Y 1
t

∣∣2 + |ζt |2
)
� C . (4.5)

Hence by monotone convergence theorem there exists a stochastic process {Yt} such that

lim
n→∞ Y n

t = Yt , ∀t ∈ [0, τ ] a.s.

Note that

E

τ∫
0

[
u1(t) + u2(t)

2]∣∣Y n
t − Y m

t

∣∣2 dt → 0, n,m → ∞, (4.6)

by the Fatou lemma. We further get by Itô’s formula that

E

τ∫
0

∣∣Zn
t − Zm

t

∣∣2 dt + E

τ∫
0

∥∥Un
t − Um

t

∥∥2
dt � 2E

τ∫
0

∣∣Y n
t − Y m

t

∣∣∣∣ f n(t, Y n
t , Zn

t , Un
t

)− f m(t, Y m
t , Zm

t , Um
t

)∣∣dt

� Ĉ

[(
E

τ∫
0

u1(t)
∣∣Y n

t − Y m
t

∣∣2 dt

) 1
2

+
(

E

τ∫
0

u2(t)
2
∣∣Y n

t − Y m
t

∣∣2 dt

) 1
2
]
,

where Ĉ is a positive constant, and we have used Holder’s inequality and (4.5). Then there exists a pair (Z , U ) ∈
L2
F(0, τ ; R1⊗d) × H2

F(0, τ ; R1⊗r) such that

E

τ∫
0

∣∣Zn
t − Zt

∣∣2 dt + E

τ∫
0

∥∥Un
t − Ut

∥∥2
dt → 0, n → ∞. (4.7)

Hence by the BDG inequality, we can easily obtain

E sup
0�t�τ

∣∣Y n
t − Y m

t

∣∣2 → 0, n,m → ∞,

which implies that there exists a sequence of {n} denoted by {n} again such that

E sup
0�t�τ

∣∣Y n
t − Yt

∣∣2 → 0, n → ∞. (4.8)

Finally we need to prove that

E

τ∫
t

f n(s, Y n
s , Zn

s , Un
s

)
ds → E

τ∫
t

f (s, Ys, Zs, Us)ds, n → ∞. (4.9)

By (4.7) we take a sequence {nk} of {n} denoted by {n} such that

E

τ∫
0

∣∣Zn
t − Zt

∣∣2 dt + E

τ∫
0

∥∥Un
t − Ut

∥∥2
dt � 1

2n
,

then

E

τ∫
0

(
sup

n

∣∣Zn
t − Zt

∣∣2 + sup
n

∥∥Un
t − Ut

∥∥2
)

dt � E

τ∫
0

∑
n

(∣∣Zn
t − Zt

∣∣2 + ∥∥Un
t − Ut

∥∥2)
dt < ∞. (4.10)

Since ∣∣ f n(t, Y n
t , Zn

t , Un
t

)∣∣� u1(t)
[

1 + sup
∣∣Y n

t

∣∣]+ u2(t)
[

sup
∣∣Zn

t

∣∣+ sup
∥∥Un

t

∥∥]

n n n



and

sup
n

∣∣Zn
t

∣∣2 + sup
n

∥∥Un
t

∥∥2 � 2
(
|Zt |2 + sup

n

∣∣Zn
t − Zt

∣∣+ ‖Ut‖2 + sup
n

∥∥Un
t − Ut

∥∥2
)
,

then by (4.5), (4.10) and Lebesgue’s dominated convergence theorem, (4.9) follows. Now taking limits in (4.4), we deduce
that (Y , Z , U ) is an adapted solution of (1.1).

Let (Ŷ , Ẑ , Û ) be an adapted solution of (1.1). By Corollary 3.1 we obtain that Y n � Ŷ , ∀n, and therefore Y � Ŷ proving
that Y is the minimal solution of (1.1). If (2.3) is satisfied, then the uniqueness of solution comes from Theorem 2.1. �
4.2. Viscosity solutions of PDIEs

Feynman–Kac formula gives a probabilistic interpretation for linear second-order PDEs of elliptic or parabolic types,
which has been generalized to the systems of semi-linear second-order PDEs by Peng [14], Pardoux and Tang [13], see also
Darling and Pardoux [3] and references therein, with the help of BSDEs. This subsection can be seen as a continuation of
such a theme, but here will give a probabilistic formula for a class of second-order partial differential and integral equations
(PDIEs) of parabolic type by applying BSDEs with Poisson jumps.

For any (t, x) ∈ [0,∞) × Rm , we consider infinite horizon FBSDEs as follows (t � s < ∞):

Xs = x +
s∫

t

b(r, Xr)dr +
s∫

t

σ(r, Xr)dWr +
s∫

t

∫
E

c(r, Xr−, e)ÑK (dr,de), (4.11)

Ys = h(X∞) +
∞∫

s

f (r, Xr, Yr, Zr, Ur)dr −
∞∫

s

Zr dWr −
∞∫

s

∫
E

Ur(e)ÑK (dr,de). (4.12)

Assume that all the coefficients in (4.11) and (4.12) are deterministic. In order to guarantee the existence and uniqueness
of strong solution to (4.11), we assume that b, σ , c are all Lipschitz continuous with a Lipschitzian function satisfying (2.1).
For (4.12) we will suppose that

(A1) |h(X1) − h(X2)| � K |X1 − X2|, where K > 0;
(A2) | f (t, X,0,0,0)| � u1(t)[1 + |X |];
(A3) | f (t, X, Y1, Z1, U ) − f (t, X, Y2, Z2, U )| � u1(t)|Y1 − Y2| + u2(t)|Z1 − Z2|;
(A4) Given an X , f satisfies (2.3) and (3.4).

Then by Theorem 4.1, (4.12) admits a unique solution. We denote the solution by (Y t,x
r , Zt,x

r , U t,x
r ), where Y t,x

r is Ft
r -adapted,

(Zt,x
r , U t,x

r ) are Ft
r -predictable, and Ft

r = σ(W s − Wt , Nk((t, s], A), t � s � r, A ∈ B(E)) ∨ N. Obviously,(
u(t, x),υ(t, x), ζ(t, x)

) := (Y t,x
t , Zt,x

t , U t,x
t

)
(4.13)

is deterministic. By the uniqueness of solution to (4.12), it is known that for any t � s < ∞,

Y t,x
s = Y s,Xt,x

s
s = u

(
s, Xt,x

s

)
.

If there exists u(t, x) ∈ C1,2([0,∞) × Rm) solving the following parabolic type of partial differential and integral equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(t, x)

∂t
+ (Lu)(t, x) = − f

(
t, x, u(t, x),υ(t, x), ζ(t, x)

)
,

(Lu)(t, x) := 〈∇u(t, x),b(t, x)
〉+ 1

2

m∑
i, j=1

aij(t, x)
∂2u(t, x)

∂xi∂x j
+
∫
E

[
u
(
t, x + c(t, x, e)

)− u(t, x) − 〈∇u(t, x), c(t, x, e)
〉]
λ(de),

aij(t, x) := (σσ ∗(t, x)
)

i j, 1 � i, j � m,

υ(t, x) := 〈∇u(t, x),σ (t, x)
〉
,

ζ(t, x) := u
(
t, x + c(t, x, ·))− u(t, x),

lim
t→∞ u(t, x) := u(∞, x) = h(x),

(4.14)

We have the following

Theorem 4.2. Let assumptions (A1)–(A4) be satisfied. If u(t, x) ∈ C1,2([0,∞) × Rm) and (u,υ, ζ ) solves PDIE (4.14), then (4.13)
holds, where (X, Y , Z , U ) is the unique solution of (4.11) and (4.12).



Proof. Applying Itô’s formula to u(s, Xt,x
s ) on [t,∞), we have

u
(∞, Xt,x∞

)= Y t,x∞ = h
(

Xt,x∞
)

= u(t, x) +
∞∫

t

∂u(s, Xt,x
s )

∂t
ds +

∞∫
t

〈∇u
(
s, Xt,x

s

)
,b
(
s, Xt,x

s

)〉
ds +

∞∫
t

〈∇u
(
s, Xt,x

s

)
, σ
(
s, Xt,x

s

)
dW s

〉

+
∞∫

t

∫
E

[
u
(
s, Xt,x

s− + c
(
s, Xt,x

s−, e
))− u

(
s, Xt,x

s−
)]

ÑK (ds,de)

+
T∫

t

∫
E

[
u
(
s, Xt,x

s− + c
(
s, Xt,x

s−, e
))− u

(
s, Xt,x

s−
)− 〈∇u

(
s, Xt,x

s

)
, c
(
s, Xt,x

s−, e
)〉]

λ(de).

On the other hand,

Y t,x∞ = h
(

Xt,x∞
)= u(t, x) −

∞∫
t

f
(
s, Xt,x

s , Y t,x
s , Zt,x

s , U t,x
s

)
ds +

∞∫
t

Zt,x
s dW s +

∞∫
t

∫
E

U t,x
s (e)ÑK (ds,de),

which together with the uniqueness of decomposition for semi-martingale give the desired conclusion. �
Remark 4.1. (4.13) can be called a Feynman–Kac formula for PDIE (4.14). More generally, if (4.11) and (4.12) are coupled and
have a unique solution, we can get the same Feynman–Kac formula as (4.13) for a PDIE, whose coefficients b, σ and c have
the arguments u(t, x),υ(t, x) and ζ(t, x).

We next exploit above Feynman–Kac formula and related comparison theorem for BSDEs with jumps to provide a prob-
abilistic formula for the solution of quasi-linear parabolic PDIE. We shall prove in this subsection that the u(t, x) := Y t,x

t is a
viscosity solution of the following backward quasi-linear second-order parabolic PDIE:

∂u(t, x)

∂t
+ (Lu)(t, x) + f

(
t, x, u(t, x),υ(t, x), ζ(t, x)

)= 0,

u(∞, x) = h(x), x ∈ Rm, 0 � t < ∞. (4.15)

Let us recall the definition of a viscosity solution for PDE (see Crandall, Ishii, and Lions [2]), we similarly give the definition
of a viscosity solution for (4.15).

Definition 4.1. A continuous function u(t, x) with u(∞, x) = h(x) is called a viscosity sub-solution (respectively sup-solution)
of (4.15), if and only if ∀ϕ(t, x) ∈ C1,2([0,∞)× Rm) at the local minimum point (respectively maximum point) (t, x) of ϕ − u
has that

∂ϕ(t, x)

∂t
+ (Lϕ)(t, x) + f

(
t, x, u(t, x),υϕ(t, x), ζ(t, x)

)
� 0 (respectively � 0),

where υϕ(t, x) := 〈∇ϕ(t, x),σ (t, x, u(t, x))〉. u is called a viscosity solutions of the PDIE (4.15) if it is both a viscosity sub-
solution and sup-solution.

Theorem 4.3. Assume that the coefficients in (4.11) are deterministic and satisfy Lipschitz condition. Under the assumptions of (A1)–
(A4), the function u(t, x) defined by Y t,x

t is continuous, and is a viscosity solution of PDIE (4.14).

Proof. The continuity of u(t, x) is similarly derived as Theorem 4.2 in [13]. We here only show that u(t, x) is a viscosity sub-
solution of the PIDE (4.14). The proof for viscosity sup-solution is similar. Let ϕ ∈ C1,2([0,∞)× Rm), and (t, x) ∈ [0,∞)× Rm

be the local minimum point of ϕ − u. Without loss of generality, we assume that ϕ(t, x) = u(t, x). We now assume that

∂ϕ(t, x)

∂t
+ (Lϕ)(t, x) + f

(
t, x, u(t, x),υϕ(t, x), ζ(t, x)

)
< 0,

and we will find a contraction.
It follows from the above and the continuity of f ,b, σ , c and ϕ that there exists 0 � α < ∞ such that for any (s, y) ∈

[t,∞) × Rm satisfying t � s � t + α, |x − y| � α,

u(s, y) � ϕ(s, y),

∂ϕ(s, x) + (Lϕ)(s, y) + f
(
s, y, u(s, y),υϕ(s, y), ζ(s, y)

)
< 0.
∂s



We now define

τ := inf
{

s > t:
∣∣Xt,x

s − x
∣∣> α

}∧ (t + α).

Let

(Y s, Z s, U s) := (Y t,x
s∧τ ,1[0,τ ](s)Zt,x

s ,1[0,τ ](s)U t,x
s

)
, t � s � t + α,

then (Y s, Z s, U s) is the solution of following BSDE:

Y s = u
(
τ , Xt,x

τ

)+ t+α∫
s

1[0,τ )(r) f
(
r, Xt,x

r , u
(
r, Xt,x

r

)
, Zr, U r

)
dr −

t+α∫
s

Zr dWr −
t+α∫
s

∫
E

U r(e)ÑK (dr,de).

From Feynman–Kac formula (see Theorem 4.2, we still use the notion υ(t, x) and ζ(t, x) below), we have for t � s � t + α,

Ys = −
t+α∫
s

1[0,τ )(r)

[
∂ϕ(r, Xt,x

r )

∂r
+ (Lϕ)

(
r, Xt,x

r

)]
dr + ϕ

(
τ , Xt,x

τ

)− t+α∫
s

υ
(
r, Xt,x

r

)
dWr −

t+α∫
s

∫
E

ζ
(
r, Xt,x

r , e
)
ÑK (dr,de).

From u � ϕ , and the choice of α and τ , we deduce that with the help of Corollary 3.1 that Y t < Yt , namely, u(t, x) < ϕ(t, x),
which contradicts our assumption. �
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