Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

The adapted solution and comparison theorem for backward stochastic differential equations with Poisson jumps and applications

Yin, J. and Mao, X. and , NSF of Guangdong Province (Funder) (2008) The adapted solution and comparison theorem for backward stochastic differential equations with Poisson jumps and applications. Journal of Mathematical Analysis and Applications, 346 (2). pp. 345-358. ISSN 0022-247X

[img]
Preview
PDF (165redactYin_Mao_JMAA.pdf)
165redactYin_Mao_JMAA.pdf

Download (194kB) | Preview

Abstract

This paper deals with a class of backward stochastic differential equations with Poisson jumps and with random terminal times. We prove the existence and uniqueness result of adapted solution for such a BSDE under the assumption of non-Lipschitzian coefficient. We also derive two comparison theorems by applying a general Girsanov theorem and the linearized technique on the coefficient. By these we first show the existence and uniqueness of minimal solution for one-dimensional BSDE with jumps when its coefficient is continuous and has a linear growth. Then we give a general Feynman-Kac formula for a class of parabolic types of second-order partial differential and integral equations (PDIEs) by using the solution of corresponding BSDE with jumps. Finally, we exploit above Feynman-Kac formula and related comparison theorem to provide a probabilistic formula for the viscosity solution of a quasi-linear PDIE of parabolic type.