Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

The adapted solution and comparison theorem for backward stochastic differential equations with Poisson jumps and applications

Yin, J. and Mao, X. and , NSF of Guangdong Province (Funder) (2008) The adapted solution and comparison theorem for backward stochastic differential equations with Poisson jumps and applications. Journal of Mathematical Analysis and Applications, 346 (2). pp. 345-358. ISSN 0022-247X

[img]
Preview
PDF (165redactYin_Mao_JMAA.pdf)
165redactYin_Mao_JMAA.pdf

Download (194kB) | Preview

Abstract

This paper deals with a class of backward stochastic differential equations with Poisson jumps and with random terminal times. We prove the existence and uniqueness result of adapted solution for such a BSDE under the assumption of non-Lipschitzian coefficient. We also derive two comparison theorems by applying a general Girsanov theorem and the linearized technique on the coefficient. By these we first show the existence and uniqueness of minimal solution for one-dimensional BSDE with jumps when its coefficient is continuous and has a linear growth. Then we give a general Feynman-Kac formula for a class of parabolic types of second-order partial differential and integral equations (PDIEs) by using the solution of corresponding BSDE with jumps. Finally, we exploit above Feynman-Kac formula and related comparison theorem to provide a probabilistic formula for the viscosity solution of a quasi-linear PDIE of parabolic type.