Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Micromiling of coarse-grained and ultrafine-grained Cu99.9E: Effects of material microstructure on machining conditions and surface quality

Pham, D.T. and Elkaseer, A.M. and Popov, K.P. and Dimov, S.S. and Olejnik, L. and Rosochowski, A. (2009) Micromiling of coarse-grained and ultrafine-grained Cu99.9E: Effects of material microstructure on machining conditions and surface quality. In: Proceedings of the International Conferences on Multi-Material Micro Manufacture (4M)/International Conferences on Micro Manufacturing (ICOMM). Professional Engineering Publishing, pp. 241-244.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper investigates the machining response of metallurgically and mechanically modified materials, in particular, coarse-grained (CG) Cu99.9E, with an average grain size of 30 µm and ultrafine-grained (UFG) Cu99.9E, with an average grain size of 200 nm, produced by Equal- Channel Angular Pressing (ECAP). A novel high-precision method for assessing the homogeneity of the material microstructure is proposed based on Atomic Force Microscope (AFM) measurements of the coefficient of friction at the atomic scale, enabling the prediction of the minimum chip thickness of the individual grains inside the bulk. The investigation has shown that by refining the material microstructure, the minimum chip thickness has been reduced and a high surface finish can be achieved. Also, the homogeneity of the material microstructure and the resulting surface quality have been improved.