Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Numerical solutions of neutral stochastic functional differential equations

WU, F. and Mao, X. and , Chinese Scholarship Council (Funder) (2008) Numerical solutions of neutral stochastic functional differential equations. SIAM Journal on Numerical Analysis, 46 (4). pp. 1821-1841. ISSN 0036-1429

[img]
Preview
PDF (161_SIAM_Num_Mao.pdf)
161_SIAM_Num_Mao.pdf

Download (228kB) | Preview

Abstract

This paper examines the numerical solutions of neutral stochastic functional differential equations (NSFDEs) $d[x(t)-u(x_t)]=f(x_t)dt+g(x_t)dw(t)$, $t\geq 0$. The key contribution is to establish the strong mean square convergence theory of the Euler-Maruyama approximate solution under the local Lipschitz condition, the linear growth condition, and contractive mapping. These conditions are generally imposed to guarantee the existence and uniqueness of the true solution, so the numerical results given here are obtained under quite general conditions. Although the way of analysis borrows from [X. Mao, LMS J. Comput. Math., 6 (2003), pp. 141-161], to cope with $u(x_t)$, several new techniques have been developed.