Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Numerical solutions of neutral stochastic functional differential equations

WU, F. and Mao, X. (2008) Numerical solutions of neutral stochastic functional differential equations. SIAM Journal on Numerical Analysis, 46 (4). pp. 1821-1841. ISSN 0036-1429

[img]
Preview
PDF (161_SIAM_Num_Mao.pdf)
161_SIAM_Num_Mao.pdf

Download (228kB) | Preview

Abstract

This paper examines the numerical solutions of neutral stochastic functional differential equations (NSFDEs) $d[x(t)-u(x_t)]=f(x_t)dt+g(x_t)dw(t)$, $t\geq 0$. The key contribution is to establish the strong mean square convergence theory of the Euler-Maruyama approximate solution under the local Lipschitz condition, the linear growth condition, and contractive mapping. These conditions are generally imposed to guarantee the existence and uniqueness of the true solution, so the numerical results given here are obtained under quite general conditions. Although the way of analysis borrows from [X. Mao, LMS J. Comput. Math., 6 (2003), pp. 141-161], to cope with $u(x_t)$, several new techniques have been developed.