Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Differential fate of erythromycin and beta-lactam resistance genes from swine lagoon waste under different aquatic conditions

Knapp, Charles W and Zhang, Wen and Sturm, Belinda SM and Graham, David W. (2010) Differential fate of erythromycin and beta-lactam resistance genes from swine lagoon waste under different aquatic conditions. Environmental Pollution, 158 (5). pp. 1506-1512. ISSN 0269-7491

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The attenuation and fate of erythromycin-resistance-methylase (erm) and extendedspectrum beta-lactamse (bla) genes were quantified over time in aquatic systems by adding 20-L swine waste to 11,300-L outdoor mesocosms that simulated receiving water conditions below intensive agricultural operations. The units were prepared with two different light-exposure scenarios and included artificial substrates to assess gene movement into biofilms. Of eleven genes tested, only erm(B), erm(F), blaSHV and blaTEM were found in sufficient quantity for monitoring. The genes disappeared rapidly from the water column and first-order water-column disappearance coefficients were calculated. However, detected gene levels became elevated in the biofilms within 2 days, but then disappeared overtime. Differences were observed between sunlight and dark treatments and among individual genes, suggesting that ecological and gene-specific factors play roles in the fate of these genes after release into the environment. Ultimately, this information will aid in generating better predictive models for gene fate.