Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Accumulation of tetracycline resistance genes in aquatic biofilms due to periodic waste loadings from swine lagoons

Zhang, Wen and Sturm, Belinda S.M. and Knapp, Charles W. and Graham, David W. (2009) Accumulation of tetracycline resistance genes in aquatic biofilms due to periodic waste loadings from swine lagoons. Environmental Science and Technology, 43 (20). pp. 7643-7650. ISSN 0013-936X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Antibiotic resistance genes (ARGs) are emerging contaminants found in the water and sediments surrounding animal feedlots. In this study, the fate of five tetra cycline-resistance and 16S-rRNA genes released in swine waste were monitored for 21 days in the water column and biofilms in 12 mesocosms mimicking different natural receiving water bodies. Four treatments were employed in triplicate: two light exposures (light/dark) and two loading scenarios (single/periodic). As seen previously, light exposure had a significant effect on disappearance rates of tet genes in both the water column and biofilms, although absolute rates were significantly lower in the biofilms. Further, periodic versus single loading events resulted in >2 orders of magnitude higher tet gene levels in associated tanks. Regardless of treatment ARGs migrated quickly to biofilms, with 3% and >85% of detected tet determinants found in biofilms on days 1 and 4, respectively. Overall, these are the first quantitative data on specific ARG disappearance rates in biofilms, and also the first evidence of progressively accumulating ARG levels in biofilms under loading conditions typical of natural receiving waters. In summary, ARGs migrate rapidly to biofilms where they persist longer than adjacent waters, which suggests biofilms likely act as reservoirs for ARGs in nature.