Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Accumulation of tetracycline resistance genes in aquatic biofilms due to periodic waste loadings from swine lagoons

Zhang, Wen and Sturm, Belinda S.M. and Knapp, Charles W. and Graham, David W. (2009) Accumulation of tetracycline resistance genes in aquatic biofilms due to periodic waste loadings from swine lagoons. Environmental Science and Technology, 43 (20). pp. 7643-7650. ISSN 0013-936X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Antibiotic resistance genes (ARGs) are emerging contaminants found in the water and sediments surrounding animal feedlots. In this study, the fate of five tetra cycline-resistance and 16S-rRNA genes released in swine waste were monitored for 21 days in the water column and biofilms in 12 mesocosms mimicking different natural receiving water bodies. Four treatments were employed in triplicate: two light exposures (light/dark) and two loading scenarios (single/periodic). As seen previously, light exposure had a significant effect on disappearance rates of tet genes in both the water column and biofilms, although absolute rates were significantly lower in the biofilms. Further, periodic versus single loading events resulted in >2 orders of magnitude higher tet gene levels in associated tanks. Regardless of treatment ARGs migrated quickly to biofilms, with 3% and >85% of detected tet determinants found in biofilms on days 1 and 4, respectively. Overall, these are the first quantitative data on specific ARG disappearance rates in biofilms, and also the first evidence of progressively accumulating ARG levels in biofilms under loading conditions typical of natural receiving waters. In summary, ARGs migrate rapidly to biofilms where they persist longer than adjacent waters, which suggests biofilms likely act as reservoirs for ARGs in nature.