Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Stabilization and destabilization of nonlinear differential equations by noise

Appleby, J. and Mao, X. and Rodkina, A. (2008) Stabilization and destabilization of nonlinear differential equations by noise. IEEE Transactions on Automatic Control, 53 (3). pp. 683-691. ISSN 0018-9286

[img]
Preview
PDF (strathprints013807.pdf)
strathprints013807.pdf

Download (252kB) | Preview

Abstract

This paper considers the stabilisation and destabilisa- tion by a Brownian noise perturbation which preserves the equilibrium of the ordinary dierential equation x0(t) = f(x(t)). In an extension of earlier work, we lift the restriction that f obeys a global linear bound, and show that when f is locally Lipschitz, a function g can always be found so that the noise perturbation g(X(t)) dB(t) either stabilises an unstable equilibrium, or destabilises a stable equilibrium. When the equilibrium of the deterministic equation is non{hyperbolic, we show that a non{hyperbolic perturbation suffices to change the stability properties of the solution. .