Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Stabilization and destabilization of nonlinear differential equations by noise

Appleby, J. and Mao, X. and Rodkina, A. (2008) Stabilization and destabilization of nonlinear differential equations by noise. IEEE Transactions on Automatic Control, 53 (3). pp. 683-691. ISSN 0018-9286

PDF (strathprints013807.pdf)

Download (252kB) | Preview


This paper considers the stabilisation and destabilisa- tion by a Brownian noise perturbation which preserves the equilibrium of the ordinary dierential equation x0(t) = f(x(t)). In an extension of earlier work, we lift the restriction that f obeys a global linear bound, and show that when f is locally Lipschitz, a function g can always be found so that the noise perturbation g(X(t)) dB(t) either stabilises an unstable equilibrium, or destabilises a stable equilibrium. When the equilibrium of the deterministic equation is non{hyperbolic, we show that a non{hyperbolic perturbation suffices to change the stability properties of the solution. .