Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Stabilization and destabilization of nonlinear differential equations by noise

Appleby, J. and Mao, X. and Rodkina, A. (2008) Stabilization and destabilization of nonlinear differential equations by noise. IEEE Transactions on Automatic Control, 53 (3). pp. 683-691. ISSN 0018-9286

[img]
Preview
PDF (strathprints013807.pdf)
strathprints013807.pdf

Download (252kB) | Preview

Abstract

This paper considers the stabilisation and destabilisa- tion by a Brownian noise perturbation which preserves the equilibrium of the ordinary dierential equation x0(t) = f(x(t)). In an extension of earlier work, we lift the restriction that f obeys a global linear bound, and show that when f is locally Lipschitz, a function g can always be found so that the noise perturbation g(X(t)) dB(t) either stabilises an unstable equilibrium, or destabilises a stable equilibrium. When the equilibrium of the deterministic equation is non{hyperbolic, we show that a non{hyperbolic perturbation suffices to change the stability properties of the solution. .