Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Feasibility study and tool design of using shape memory alloy as tool-structural-elements for forming-error compensation in micro-forming

Pan, W. and Qin, Yi and Law, F. and Ma, Y. and Brockett, A. and Juster, N.P. (2008) Feasibility study and tool design of using shape memory alloy as tool-structural-elements for forming-error compensation in micro-forming. International Journal of Advanced Manufacturing Technology, 38 (3-4). pp. 393-401. ISSN 0268-3768

[img] PDF (strathprints013805.pdf)
strathprints013805.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (678kB) | Request a copy from the Strathclyde author

Abstract

Taking advantages of special properties of Shape Memory Alloys (SMA), a concept of error compensation for micro-forming with the use of SMA as an actuating/enhancing element was proposed. Simplified analysis of tool-structures, FE simulation of forming processes and experimental tests on the tubular-cylinders with SMA enhancement wires showed that the pressures created due to the geometric change of the SMA under the temperature above its transformation value could generate sufficient contraction of the cylinders, compared to the forming-error values predicted for micro-forming, and hence, they are potentially feasible for the applications to error-compensation in micro-forming. Based on these results, a detailed micro-forming-tool design with an SMA enhanced ring structure has been produced.