Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Interferometric method for determining the sum of the flexoelectric coefficients (e1+e3) in an ionic nematic material

Trabi, C.L. and Brown, C.V. and Smith, A.A.T. and Mottram, N.J. (2008) Interferometric method for determining the sum of the flexoelectric coefficients (e1+e3) in an ionic nematic material. Applied Physics Letters, 92 (22). ISSN 0003-6951

[img]
Preview
PDF (2008_Appl_Phys_Lett_v92_p223509_Trabi_CL.pdf)
2008_Appl_Phys_Lett_v92_p223509_Trabi_CL.pdf - Accepted Author Manuscript

Download (172kB) | Preview

Abstract

The time-dependent periodic distortion profile in a nematic liquid crystal phase grating has been measured from the displacement of tilt fringes in a Mach-Zehnder interferometer. A 0.2 Hz squarewave voltage was applied to alternate stripe electrodes in an interdigitated electrode geometry. The time-dependent distortion profile is asymmetric with respect to the polarity of the applied voltage and decays with time during each half period due to ionic shielding. This asymmetry in the response allows the determination of the sum of the flexoelectric coefficients (e1+e3) using nematic continuum theory since the device geometry does not possess inherent asymmetry.