Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

A periodogram-based test for weak stationarity and consistency between sections in time series

Halliday, D.M. and Rosenberg, J.R. and Rigas, A. and Conway, B.A. (2009) A periodogram-based test for weak stationarity and consistency between sections in time series. Journal of Neuroscience Methods, 180. pp. 138-146.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In one approach to spectral estimation, a sample record is broken into a number of disjoint sections, or data is collected over a number of discrete trials. Spectral parameters are formed by averaging periodograms across these discrete sections or trials. A key assumption in this approach is that of weak stationarity. This paper describes a simple test that checks if periodogram ordinates are consistent across sections as a means of assessing weak stationarity. The test is called the Periodogram Coefficient of Variation (PCOV) test, and is a frequency domain test based on a technique of spectral analysis. Application of the test is illustrated to both simulated and experimental data (EMG, physiological tremor, EEG). An additional role for the test as a useful tool in exploratory analysis of time series is highlighted.