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Abstract An implementation of the Causal Differential Method (CDM) for mod-

elling the effective properties of a random two-phase composite material is pre-

sented. Such materials are commonly used as ultrasonic transducer matching layers

or backing layers. The method is extended to incorporate a particle size distribution

in the inclusion phase. Numerical issues regarding the implementation and con-

vergence of the method are discussed. It is found that, for a given frequency of

excitation, the calculated velocity for the composite has a distribution whose vari-

ance increases as the volume fraction of inclusions increases. The model predictions

would suggest that to reliably and repeatedly manufacture these composites, with a

desired mechanical impedance, a low volume fraction of inclusions should be used.

1 Introduction

The transmission and detection of ultrasonic energy forms the basis for imaging and

non-destructive testing systems in a broad range of applications such as biomed-

ical therapy and diagnosis, underwater sonar, non-destructive testing, structural

condition monitoring, industrial processing and control, and materials characteri-

sation [4]. The requirement for efficient generation and detection over a desired

frequency band is paramount and very often the limiting component of the entire

system relates to the front end transducer design [7]. These devices normally consist

of an active piezoelectric layer sandwiched between a backing material for damping
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and bandwidth control and some form of matching layer for interfacing to the me-

chanical load medium. Piezoelectric ceramics are mechanically stiff and do not in-

terface well to media with low mechanical impedance such as water and air. Match-

ing layers are therefore used to bridge this large impedance mismatch [5]. In many

cases however these matching layers have to be manufactured by mixing two differ-

ent materials in order to achieve the desired effective mechanical impedance [8]. A

large variability in these effective properties can often be found for a given base and

inclusion material, and volume fraction of inclusions. This is thought to be due to

the random agglomeration of the inclusion particles to form percolation paths in the

base material. This paper investigates this experimentally observed phenomenon by

using the Causal Differential Method [3] with the addition of a particle size distri-

bution to mimic the particle aggregation process. The model can be configured to

assess the longitudinal and shear wave properties of the composite. This will allow

for full characterisation of the material’s elastic character. Such data is routinely em-

ployed in advanced two and three dimensional finite element analysis of these types

of composite materials within transducer structures and as such a complete descrip-

tion of the elastic character is required. For example, matching layers are typically

designed to a specific acoustic impedance in order to match the transducer to some

load. However, in a transducer array configuration the matching layer is capable of

supporting guided waves which will compromise the beam directivity and degrade

imaging performance. Hence it is desirable to implement a methodology that will

facilitate a more complete characterisation of these materials.

In the next section therefore, the model equations for a shear wave travelling in a

two-dimensional plane containing randomly dispersed disc-like inclusions are pre-

sented. A dimensional rescaling is introduced to alleviate the numerical instabilities

inherent to the model. A discussion on the convergence of the method and the effect

that the properties of the two constituent materials have on the model’s output is

then given. Finally, the effect that the particle size distribution has on the variance

of the model’s output is presented.

2 The Causal Differential Method

By adding inclusions into a homogeneous material, the acoustic properties of the

original material are modified by those of the inclusions [6]. In the regime where the

particle size is commensurate with the wavelength of the insonifying wave there are

a range of scattering theory methods for calculating the speed of propagation of the

ultrasound wave [1]. The differential (or incremental) methods start by calculating

the effective properties of a composite material containing a very small volume frac-

tion of isolated particles (single particle scattering). The effective properties of this

material are then used as the base material when adding another small volume frac-

tion of inclusions. In this way the desired volume fraction of inclusions is obtained

in a step by step manner and the final effective material properties are given by the

final iteration. One such approach is the Causal Differential Method (CDM) [3].



The Causal Differential Scattering Approach 3

The method considers the single scattering effect of adding small amounts of the

inclusion, ∆φ , into a homogeneous matrix. By homogenising this new matrix, and

repeating the process, the prescribed volume fraction of the inclusion, φ , can be met.

The predictions therefore lie between those given by a single-scattering approach

and those given by a multiple-scattering method. The initial inclusion volume frac-

tion is set at φ0 = ∆φ with ρ0 (and µ0) set at the density (and shear modulus) of the

pure base material. A subscript I will be used to denote the corresponding properties

of the inclusion material. The volume fraction is updated using

φn+1 = φn +∆φ n = 0,1,2, . . . ,N −1 , (1)

where N is the number of steps in the iteration given by

N =
φ

∆φ
. (2)

The homogenised properties are then given by [2]

ρn+1 = ρn(1−φn)+ρI φn, (3)

and

µn+1 =
µI(1+φn)+ µn(1−φn)

µI(1−φn)+ µn(1+φn)
µn. (4)

The attenuation is calculated at each step using the additive law associated with

acoustic attenuation given below by

αn+1(ω) = αn(ω)+∆φ
γex

n (ω)

2πa2
, (5)

where πa2 is the area of the inclusion. The extinction cross-section γ ex
n can be shown

to simplify to the scattering cross-section of a single disc. This is given by the so-

lution to the diffraction of elastic simple harmonic waves by an elastic embedded

cylinder [3]. The incident wave is given by

uin
z = ei(knx−ωt), (6)

and the scattered wave by

usc
z =

∞

∑
m=0

AmH
(1)
m (knr)cos(mθ)e−iωt , (7)

where H
(1)
m is a Hankel function of the first kind of the mth order and the wave

number kn of the current homogenised ‘base’ material is given by

kn =
ω

cn(ω)
+ iαn(ω). (8)
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The extinction cross-section γex
n is a function of ω,ρn,ρI ,µn,µI and a and is given

by

γex
n = 2

(
2 |A0|

2 +
∞

∑
m=1

|Am|
2

)
(kn)

−1, (9)

with

Am = −imεm

(
µIkIJm(akn)J

′

m(akI)
−µnknJ′m(akn)Jm(akI)

)

/

(
µIkIH

(1)
m (akn)J

′

m(akI)

−µnknH
(1)′

m (akn)Jm(akI)

)
(10)

where

εm =

{
1 m = 0

2 m ≥ 1
, (11)

and Jm(z),J′m(z),H
(1)
m (z) and H

(1)′

m (z) denote the the mth order Bessel and Hankel

functions of the first kind and their derivatives with respect to z, respectively, and

the wave number in the inclusion material kI is given by

kI = ω

√
ρI

µI

. (12)

The phase velocity ignoring attenuation is given by

vn =

√
µn

ρn

. (13)

This value is then used to calculate the model’s phase velocity adjusted for attenua-

tion given by the Kramers-Kronig relationship

cn+1(ω) = vn+1

(
1+ 2ω

2

π
vn+1−

∫
∞

0

α
n+1(Ω)

Ω 2(Ω 2
−ω2)

dΩ
)
−1

. (14)

where the slash in the integral sign denotes Cauchy’s principal value.

The algorithm is initialised by setting values for µI ,ρI ,µ0,ρ0,a,∆φ ,φ , setting

α0 = 0, setting c0 = v0 using equation (13), and by setting kI using equation (12).

The algorithm steadily updates the volume fraction using equation (1) until the de-

sired volume fraction is achieved. At each step kn is calculated using equation (8),

Am from equation (10), γex
n from equation (9), αn+1 from equation (5), vn+1 from

equations (4), (3) and (13), and finally cn+1 from equation (14). The number of

steps N is given by equation (2) and so the phase velocity is given by

c(ω) = vN

(
1+

2ω2

π
vN−

∫
∞

0

αN(Ω)

Ω 2(Ω 2 −ω2)
dΩ

)−1

. (15)
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3 Numerical Implementation

Four implementation issues present themselves:

• the inaccuracies and numerical instabilities associated with the very large and

very small parameter values

• the singularity in the integrand of equation (14) and the associated Cauchy prin-

cipal value

• the infinite integral in equation (14)

• the infinite summation in equation (9)

To improve the accuracy and efficiency of the computations a re-scaling of the

dimensions was implemented. This allowed the program to compute with numbers

of O(1) instead of the extremely large and small values that exist. The fundamental

units of mass (M), length (L) and time (T) were scaled by M̂ = γM, L̂ = βL and

T̂ = δT with the scaling factors chosen to make each of the parameters as close as

possible to O(1). For the particular example considered here this was achieved by

setting γ = 106, β = 103 and δ = 106 (see Table 1).

Parameter Dimensions Scaling

µ ML−1T−2 γβ−1δ−2

ρ ML−3 γβ−3

a L β
ω T−1 δ−1

c,v LT−1 βδ−1

k L−1 β−1

γ L β
α L−1 β−1

Table 1 Dimensional Analysis of the Model Parameters

In equation (15) the integrand has a singularity at Ω = ω and Cauchy’s principal

value takes the finite limit of the integral as Ω tends towards this singular point.

This was numerically implemented by introducing a neighbourhood ∆ω around this

singularity. Additionally, a finite (but large) parameter ωu was introduced to replace

the infinite upper limit in this integral. A series of numerical experiments were then

conducted to determine appropriate values for ∆ω and ωu that ensured reasonable

convergence. A balance between the accuracy of the result with the computational

time is then desired. A further numerical issue arose in the calculation of γ ex
n in

equation (9) since the upper limit in the summation is infinite. This was replaced

by a finite sum to M terms. In order to apply the model there are therefore four

implementation parameters that need to be set: M,∆φ ,∆ω and ωu. Convergence

was assessed by considering the summed difference in the phase velocity over a

suitable angular frequency range defined as
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F(M,∆φ ,∆ω,ωu) = ∑
i

∣∣c j+1(ωi)− c j(ωi)
∣∣2 , (16)

where j represents the jth value of the particular parameter being examined. For

this analysis three of the parameters were fixed, and the decay in F examined

whilst the fourth parameter was varied. When varying ωu, the phase velocity

had a range ω ∈
[
1.7×103,2.5×105

]
Hz with the remaining numerical param-

eters fixed at M = 3,∆φ = 4.625 × 10−2 (N = 4) and ∆ω = 15 Hz. The physi-

cal parameters were chosen similar to those in [3]: φ = 0.185,µI = 0.1GPa,µ0 =
0.0155GPa,ρI = 1× 103 Kgm−3,ρ0 = 1.075× 103 Kgm−3 and a = 2.3 mm. The

results were compared for (ωu) j = {0.2,0.8,1.7,10,18}×105 Hz respectively. The

results showed that F converged to a reasonable level for ωu ≥ 0.8× 105 Hz with

a linear relation between the computational time and (ωu) j. This procedure was

repeated in order to determine the effect of increasing M. All parameters were iden-

tical with the exception of fixing ωu = 0.8× 105 Hz and running the model with

(M) j = {1,3,5,7,10,15,20}. Again F converged as M increased, a linear increase

in computational time was observed and reasonable convergence was observed for

M ≥ 5. A similar analysis was conducted for ∆ω however, unlike ωu and M, there

was no linear relationship between the computational time and ∆ω . The effect of

increasing N (decreasing ∆φ ) was analysed over different volume fractions φ for the

same angular frequency range with M = 9 and ωu as above. The volume fractions

considered were φ j = {0,0.25,0.5,0.75,1} with N j = {2,4,6 . . .18,20}. It was ob-

served that there was a linear increase in the computational time as N increased, as

expected. There was also evidence of a linear increase in the computational time as

the angular frequency increased. Additionally, the phase velocity tended to a limit

as N increased and if too large a value for ∆φ was chosen then the method became

unstable.

4 Analysis of Relationships of Physical Properties in Model

In this section the model was applied to a material commonly used to produce trans-

ducer matching layers and backing blocks (epoxy resin and tungsten particles). The

appropriate data are summarised in Table 2.

Material µ (G Pa) ρ (Kgm−3)

Epoxy 1.48 1140

Tungsten 161.2 19300

Table 2 Physical properties of epoxy and tungsten

The effect that the various physical parameters of the two constituents have on

the model’s prediction of the phase velocity was then examined. For example, it
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was found that the phase velocity increased as the square root of the effective shear

modulus and as the square root of the effective density. The radius of the inclusions

has a marked influence on the final phase velocity. The typical mean particle size

used for the tungsten inclusions was 4− 6µm with a range of other commercially

available mean particle sizes being a = {1,10,25,100,250} µm.

500 kHz

1 MHz

1.5 MHz

.

.

.

5 MHz

0.00005 0.00010 0.00015 0.00020 0.00025

1500

2000

2500

3000

3500

a

c

Fig. 1 Phase velocity c(ms−1) versus particle size a(m) for frequencies 500 kHz to 5 MHz, with

inclusion volume fraction φ = 0.3. The velocity profiles move upwards monotonically as the fre-

quency increases.

Figure 1 shows that the velocity changes as the particle size increases and that it

does so in a nonlinear fashion. In addition, at these values of the particle size, this

velocity depends on the frequency of the ultrasound wave. In this region the particle

size is commensurate with the wavelength of the ultrasound wave. As the frequency

increases the velocity profile increases monotonically until once again the velocity

curves converge for very high frequencies.

5 Comparison between the theoretical predictions and

experimental measurements

In order to carry out an experimental validation of this model a number of sam-

ples of epoxy resin, filled with tungsten particles, were prepared and their acous-

tic properties measured by a through transmission method [9]. The epoxy resin,

CY1303/HY1300, was supplied by Huntsman, Cambridge, UK and the tungsten

particles with a mean particle size of 5 µm were supplied by Ultimate Metals,

Chingford, UK. The epoxy resin was mixed by hand in accordance with the manu-

facturer’s instructions and degassed in a vacuum chamber to remove any entrained

air bubbles. The epoxy and tungsten, in the required volume ratio, were placed in a

pestle and mortar and the mixture carefully ground together. For each sample suf-

ficient material was prepared in excess to produce a sample with the dimensions

49mm diameter with a 10mm thickness. Once thoroughly mixed the material were

transferred to a mould with a close fitting lid. The mould was designed to allow the

excess material to escape prior to sealing the mould, once sealed the tungsten-epoxy

composite was allowed to cure for 18 hours at room temperature prior to being re-
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moved from the mould. Once removed from the mould the major faces were then

machined to ensure parallelism for the measurement of acoustic properties.

In samples with low volume fraction, in the current context φ ≤ 0.4, the density

of the tungsten particles will mean that settlement will occur during the cure cycle.

To limit the settlement, the cylindrical mould is mounted axially into a rotation

fixture and rotated about the axis during the cure cycle. In the case of samples where

φ ≥ 0.4, the tungsten-epoxy composite must be cured under pressure in order to

obtain a uniform fully cured composite. To apply pressure to the curing material

a reusable cylindrical mould manufactured from PTFE was used, a simple plunger

mechanism was incorporated into the mould design such that the material could be

compressed using a hydraulic press attached to the plunger. For each sample having

a volume fraction greater than 0.4, the mould was subject to 1000 psi pressure during

the cure cycle.

The acoustic velocities were measured using a through transmission time of flight

method. Since the samples were acoustically matched to water, oil having a velocity

of 680 m/s was employed as the coupling medium in order to refract a shear wave

into the sample. Figure 2 shows the measured acoustic velocities and these compare

well with those obtained using the theoretical approach detailed in Section 2.

àà

à
à

à
à
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800

1000

1200
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Fig. 2 Phase velocity c (ms−1) versus the volume fraction of the tungsten inclusions φ at frequency

500 KHz. The model results (full line) are compared with experimentally measured values (filled

squares), with a particle size of 5 µm.

6 A Particle Size Distribution

In a practical situation it is impossible to add inclusions of identical size. In fact,

most commercially available materials follow a normal distribution with a specified

mean particle size. It is also of interest to investigate the root cause for the ex-

perimentally observed variations in the measured mechanical impedance of epoxy-

tungsten samples at a fixed volume fraction of inclusions. The CDM algorithm was

adapted by replacing the fixed particle size at each step with a random value drawn

from a normal distribution of known mean and standard deviation. The phase ve-

locity was plotted as a function of the final volume fraction of inclusions with the
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physical parameters set at those for epoxy and tungsten (see Table 2), with ā = 5µm,

and the implementation parameters set as M = 9,∆φ = 0.05 and ∆ω = 0.8×103 Hz.

The process was conducted for a standard deviation of σ1 = 0.1ā to determine the

effect that a spread of particle sizes in a sample of tungsten powder would have. The

algorithm was run several times and the variation in the results was then compared

with those from a fixed particle size simulation.

0.2 0.4 0.6 0.8

1500

2000

2500

φ

c

Fig. 3 Phase velocity c(ms−1) versus inclusion volume fraction φ at frequency f = 1 MHz for

random particle size selection from a normal distribution with ā = 5µm and a 10% standard de-

viation. The shaded regions denote the variance in the model’s output lying above and below the

fixed particle size simulation.

Figures 3 shows an increase in the difference between the maximum and the

minimum values from the phase velocity for constant particle size as the volume

fraction increases.

An alternative view can be taken of these results by fixing the volume fraction

(φ = 0.2 and ∆φ = 0.04) and calculating the phase velocity as the frequency of the

insonifying wave is varied.

1. ´ 10
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Fig. 4 Phase velocity c(ms−1) versus frequency f (Hz) at an inclusion volume fraction of φ = 0.2,

for a random particle size selection from a normal distribution with ā = 5µm and a 10%standard

deviation. The shaded regions denote the variance in the model’s output lying above and below the

fixed particle size simulation.

As the frequency increases, the variance in phase velocity due to the random par-

ticle size increases, highlighting the fact that the higher the frequency the more the

variations in particle size affect the velocity. In order to produce a composite for a

transducer matching layer, capable of working over a broad-bandwidth, it is impor-

tant to have a sample of inclusions with as low a variance as possible in a size regime
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that is outwith the effects of scattering. This will allow a greater predictability of the

phase velocity, and as a result be able to produce a desired composite material with

greater control.

7 Conclusion

Ultrasonic transducer designs typically consist of an active piezoelectric layer sand-

wiched between a backing material for damping and bandwidth control and some

form of matching layer for interfacing to the mechanical load medium. These ma-

terials are very often manufactured by mixing two different materials in order to

achieve a desired mechanical impedance. A large variability in these effective prop-

erties can often be found for a given base and inclusion material, and a fixed volume

fraction of inclusions. This is thought to be due to the random agglomeration of the

inclusion particles to form percolation paths in the base material. In this paper an

implementation of the Causal Differential Method (CDM) has been presented and,

by incorporating a particle size distribution in the inclusion phase, the root cause of

this variability in the effective composite properties is examined. Numerical issues

regarding the implementation and convergence of the method were also discussed.

Reasonable convergence and computational times for the method were found as

functions of the implementation parameters in the model. A dimensional rescaling

was also introduced to alleviate the numerical instabilities inherent to the model.

It was found that, for a given frequency of excitation, the calculated velocity for

the composite has a distribution whose variance increases as the volume fraction

of inclusions increases. This would suggest that to reliably and repeatedly manu-

facture composites with a desired mechanical impedance, a low volume fraction of

inclusions should be used.
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