Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

A theoretical model of a new electrostatic transducer incorporating fluidic amplification

Walker, Alan J. and Mulholland, A.J. and Campbell, Ewan and Hayward, G. (2008) A theoretical model of a new electrostatic transducer incorporating fluidic amplification. In: 2008 IEEE International Ultrasonics Symposium, 1900-01-01.

[img]
Preview
PDF (walkeretal_2008.pdf)
walkeretal_2008.pdf

Download (2MB) | Preview

Abstract

This article concerns the design of a new electrostatic transducer whose backplate consists of a series of drilled pipes. A new one-dimensional model is derived which considers the interaction of the membrane with the air load, the air cavities, and the drilled pipes in the backplate. Dynamic equations for the impedance in each component of the device are calculated analytically and connected using interface conditions of continuity of pressure and radiation conditions into the air load. The model is able to produce solutions to the mechanical impedance of the device and the displacement of the membrane as a function of the device's design parameters. Model results for the output pressure compare well with previous experimental data. The inverse problem of retrieving the design parameters for a desired output is discussed.