Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Complex refractive index of non-spherical particles in the vis-NIR region - application to Bacillus Subtilis spores

Velazco-Roa, Maria A and Dzhongova, Elitsa and Thennadil, Suresh N. (2008) Complex refractive index of non-spherical particles in the vis-NIR region - application to Bacillus Subtilis spores. Applied Optics, 47 (33). pp. 6183-6189. ISSN 1559-128X

[img]
Preview
PDF (strathprints013724.pdf)
strathprints013724.pdf

Download (1MB) | Preview

Abstract

A method is presented for the estimation of optical constants in the ultraviolet-visible-near-infrared (UVVis- NIR) region of nonspherical particles in a suspension at concentrations where multiple scattering is significant. The optical constants are obtained by an inversion technique using the adding-doubling method to solve the radiative transfer equation in combination with the single scattering theories for modelling scattering by nonspherical particles. Two methods for describing scattering by single scattering are considered: the T-matrix method and the approximate but computationally simpler Rayleigh- Gans-Debye (RGD) approximation. The method is then applied to obtain the optical constants of Bacillus subtilis spores in the wavelength region 400-1200 nm. It is found that the optical constants obtained using the RGD approximation matches those obtained using the T-matrix method to within experimental error.