Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Wide-bandwidth mode-hop-free tuning of extended-cavity GaN diode lasers

Hult, J. and Burns, I.S. and Kaminski, C.F. (2005) Wide-bandwidth mode-hop-free tuning of extended-cavity GaN diode lasers. Applied Optics, 44 (18). pp. 3675-3685. ISSN 1559-128X

PDF (Wide-bandwidth mode-hop-free tuning of extended-cavity GaN diode lasers)
Appl_Opt_ECDL.pdf - Final Published Version

Download (325kB) | Preview


We present a new approach for extended-cavity diode-laser tuning to achieve wide mode-hop-free tuning ranges. By using a multiple piezoactuated grating mount, the cavity length and grating angle in the laser can be adjusted independently, allowing mode-hop-free tuning without the need for a mechanically optimized pivot-point mount. Furthermore, synchronized diode injection-current tuning allows diode lasers without antireflection coatings to be employed. In combination these two techniques make the construction of a cheap, efficient, and easily optimized extended-cavity diode laser possible. A theoretical analysis is presented for optimal control of piezoactuator displacements and injection current to achieve the widest possible mode-hop-free tuning ranges, and a comparison is made with measurements. The scheme is demonstrated for blue and violet GaN lasers operating at similar to 450 nm and similar to 410 nm, for which continuous tuning ranges exceeding 90 GHz have been achieved. Examples of applications of these lasers are also given.