Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Two-line atomic fluorescence flame thermometry using diode lasers

Hult, J. and Burns, I.S. and Kaminski, C.F. (2005) Two-line atomic fluorescence flame thermometry using diode lasers. Proceedings of the Combustion Institute, 30 (1). pp. 1535-1543. ISSN 1540-7489

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper reports on the first application of diode laser based LIF for pointwise temperature measurements in flames. The technique is based on two-line atomic fluorescence (TLAF) thermometry of indium atoms seeded at trace levels into the flame. Two novel extended cavity diode laser systems (ECDLs) were developed, providing tunable single-mode radiation around 410 and 451 nm, respectively, to excite the temperature sensitive 5P(1/2)-6S(1/2) and 5P(3/2)-6S(1/2) transitions of indium. The wide tuning range of the ECDLs allowed scans over the entire pressure broadened hyperfine structure of both transitions to be performed with signal-to-noise ratios exceeding 50 on single wavelength sweeps (at 20 Hz). We present a modified TLAF detection scheme that requires only a single detector and obviates the need for detection system calibration. Spatially resolved temperature profiles were obtained from a laminar premixed CH4/air flame and found to be in excellent agreement with temperatures obtained from high-resolution OH LIF scans. The accuracy and spatial resolution of the technique makes this an attractive alternative to traditional, more complex, and expensive, temperature measurement techniques of similar or better precision. Finally, we demonstrate that PLIF imaging of atom distributions in flames is possible using low power diode lasers.