Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Diesel transport monitoring in simulated unconfined aquifers using miniature resistivity arrays

Sentenac, P. and Montinaro, A. and Kulessa, B. (2010) Diesel transport monitoring in simulated unconfined aquifers using miniature resistivity arrays. Environmental Earth Sciences, 61 (1). pp. 107-114. ISSN 1866-6280

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The principal aim of this study is to assess the scope of monitoring diesel plume migration in a scaled aquifer model with a miniaturised electrical resistivity array. Respectively 1000 and 500 ml of diesel were injected in both the unsaturated and water-saturated zones of a sand body overlying a clay aquitard, and diesel migration was monitored with a miniature electrode array and an off-the-shelf resistivity meter. Inverted time-lapse electrical resistivity tomography (ERT) data reflect downward and lateral spreading of the diesel plume away from the injection point in the unsaturated zone. Diesel was also imaged to spread upwards and laterally away from the injection point in the saturated zone, as controlled by capillary rise. In both cases later-time ERT images reflected preferential pooling of diesel on the water table, as well as vertical smearing of pooled diesel in response to simulated water-table fluctuations. Repeat fluid electrical conductivity (EC) and dissolved oxygen (DO) measurements validate the observed changes in bulk resistivity caused by both diesel injections. Artefacts introduced by 2D inversion of 3D contaminant transport were abound. Time-lapse ERT imaging of diesel transport is therefore inferred to be feasible and well-suited to complementing conventional techniques of intrusive site investigation, although timelapse 3D or 4D ERT imaging is strongly advocated.