Relationship between the Kubelka-Munk scattering and

radiative transfer coefficients

Suresh N. Thennadil
School of Chemical Engineering and Advanced Materials, University of Neweasile upon Tyne,
Newcastle upon Tyne, NEI 7RU, United Kingdom

s thennadid @ncl ok

The relationship between the Kubelka-Munk (K-M) scattering and the transport scattering
coefficient is obtained through a semi-empirical approach. This approach gives the same result as
that given by Gate when the incident beam is diffuse. This result and those given by Star er af
and Brinkworth are compared with the exact solution of the radiatve transfer equation over a
large range of optical properties. It is found that the latter expressions which include an
absorption component do not give accurate results over the range considered. Using the sermi-
empirical approach, the relationship between the E-M and transport scattering cocHicient is
derived for the casc where the incident light is collimated. It is shown that although the K-M
equation is derived based on diffuse incident light, it can also represent very well the reflectance
from a slab of infinite thickness when the incident light is collimated. However, in this case the
relationship between the coefficients has to include a function that is dependent on the anisotropy
factor. Analysis indicates that the K-M transform achicves the objective of obtaining a measurc
that gives the ratio of absorption to scattering cffects for both diffuse and collimated incident

beam over a large range of optical propertics. © 2007 Optical Society of America
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1. Introduction

Diffuse reflectance spectroscopy has been used as a characterisation tool for a wide variety of
applications  involving  particulate media  such  as  paints, films and powders. The
phenomenological Kubelka-Munk (K-M) theory has been extensively used for analysing
reflectance spectra of such media [1-6]. While light propagation can be more rigorously
described using the radiative transter equation (RTE), the computational complexity of the RTE
especially when the exact solution is involked makes it hard to use under practical conditions.
Although approximate expressions derived from the RTE have been available, the simplicity of
the K-M theory with its simple analytical solution has been the main reason for its continued

widespread use, According to this theory [1]. the reflectance from a slab of infinite depth R is

given by:

“—E[H]“E[u K]“ (1)
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Particularly, the Kubelka-Munk transform for converting the reflectance from a semi-infinite
slab into a ratio of “absorption”™ and “scattering” effects has been widely used for analysing such

samples [4-6]:
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The assumption underlving the use of this transform for analysing reflectance data is that the
phenomenological absomption and scattering cocfficients are functions of purely the physical
absorption and scattering coefficients respectively and thus their ratio is proportional to the

corresponding ratio of the physical optical properties. However, the K-M theory does not provide



an explicit connection between K-M cocficients and the optical propertics of individual particles
as can be obtained in the case of the RTE based formulas. One approach to obtain this
connection is to establish the relabonship between the transport cocfficients from the RTE and

the K-M cocfficients.

The relationship between K-M and the transport coefficients have been examined previously by
several researchers [7-9] who used the radiative transfer equation {RTE) as the starting point. In
these cases the relabionship between the Kubelka-Munk absorption coefficient Kand the

transport absorption coefficient p, was given by
K= 2h, i3

For the scattering cocfficients slightly different relationships were obtained by different

rescarchers with the general form:
S=wyH, —XH, (4}

where 5 is the Kubelka-Munk scattering cocfficient, _LL; =pgil1—g) is the reduced transport
scattering cocfficient, pyis the transport scattering cocfficient and g is the anisotropy factor.
Brinkworth’s formula [7] is obtained when x = |, Gate’s formula [B] is given by x = 0 and Star er
al [9] give x = . All of themn give y = ¥. This study focuses on obtaining a relabionship between
5 and the transport cocficients through a semi-empirical approach. The relationship between K

and the transport coefficients is taken to be the same as that given by (3],



According to (3) and (4], the ratio of KJ/S docs not strictly provide a ratio of purcly absomption
and scattering effccts since 5 contains absorption cffects in addition to scattering except when x

= i.c. when Gate’s formula is used. Examining (4], it can be scen that this equation can at hest
be only valid when u; = (xS vip, . When |_|; is equal to or less than this value we get physically
unrealistic values for 5 and consequently for R, calculated using (1), As a result, it is not clear

whether including the second term in (4) gives an accurate relationship over a range of values of

My and |_|; to be of practical use.

A plavsible alternative is to use a simplified formola for diffuse reflectance which gives

reasonably good estimates and from which we can derive the ratio of the physical absorption and

. . ! - - . .
scattering effects e p, /p, in terms of R A semi-empirical formula based on the transport

cocfficients was proposed by Jacques [10] where the reflectance from a semi-infinite media is

approximately represented by a Beer’s law type of equation:
R = expl-Cppyd) (5)

Here R, is the total diffuse reflectance, Cpis a constant and & is the penetration depth given

by:

i = ’mu g 1 ]]_U'S (6)

The constant Cgcan be obtained by fitting R. obtained for known values of pg uru:l|.|;.



[n this paper, the range of validity of (5] is cxamined by using data gencrated by solving the
exact RTE using the doubling method for diffuse and collimated incident beams [117]. It is then
|
shown that when p_ /p, =<1 (the region of validity of (53). the K-M equation for reflectance
from a slab of infinite thickness and (5) arec equivalent. From this comparison, the value of ¥ in
(41 is obtained for the cases of diffuse and collimated incident beam. The relationship so
obtained is compared with those reported by the rescarchers mentioned carlier. The approach is
then applicd to collimated incident beam to investigate the possibility of using the K-M equation

under such condition.

2. Data set generation

The RTE was solved using the doubling method implemented in Matlab [11-12]. For this study
matched boundary conditions were used ic. the refractive index of the sample and the
surrounding medium arc the same. The simulations were carried out for transport parameters
generated using a full factorial design with the following range of parameters: p, = 0.02 — 15
mm™; p,=0.2 - 40 mm™" and g = 0.001 — 095, Data for these values were generated for two
types of incident beams: Diffusc and collimated. For both these cases, normal incidence was

assumed.
3. Results and discussions

3.1. Valdity of Eq. (5)
According to (3), the logarithm of R should be linear inpgé. From figure la, which shows the
results for the case of diffuse incident beam, it can be scen that the relationship becomes highly

nonlinear beyond pgé of about 0.4, In fact, further examination showed the relationship can be



reasonably approximated by the linear relationship for p,6 = 018 as shown in figure b The
residuals plot figure 1o, shows the error inusing (5) to compute R for this range. It can be seen
that there is still a nonlinear component which is not explained. However, for this range of pa
values, this unexplained component is very small — in the order of 10", This translates to less
than 1% error in the caloulated reflectance over the range of optical properties considered (with
an EMS ecrror of about 0.5% over this range). In terms of p, ,-"I|.|; , this upper limit of pgé
translates to a value of about 0.1, This is arrived at from the relationship derived using (6):

TR (T

be  1=3Hpga) .
Fitting (37 to the reflectance data for this ange ofp |_|:,i , for the case of diffuse incident beam.,

we getCp=4.0.

When the incident beam is collimated. figure 2(a) shows similar characteristics in terms of
linearity as for the case of diffuse incident beam. However, the “spread™ in the reflectance due to
the variaHons in g at each value of p_ & is significantly higher indicating a stronger dependence
on g compared to the case of diffuse incident beamn where this effect was negligible. Figure 2(h)
shows a plot of Ro in the lincar range of p,é for two extreme values of g (= 0.00] and 0.95). It
can be seen that the effect of g is essentially on the slope and thus Cp can be expected to be a
function of g. The variation of Cp with g (Figure 2e) was found by estimating Cpusing
reflectance data from solving the RTE with g fixed at different values. The solid line in Figure 2c

was obtained by fitting a second degree polynomial:



Cpig)=4.8446 +0.472g —0.114g? (%)

[t can be scen that variation of Cy with g can be well represented by a second order polynomial

3.2 Comparison of Eq. 5 with K-M equation

Eq. (7). can be re-written as:

(%
When |.Lul.l'l|.|:,i <« |, this reduces to:

iy

Substituting in Eq. 3, we get

Co (.
Rt:cn‘[_ﬁﬂu—'] (11}

Using the scrics expansion of the right hand side and neglecting powers higher than 1, (11)

becomes

.
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The Kubclka-Munk cquation is derived under the conditions that the incident beam is diffuse and

that scattering is isotropic and absorption effects arc small compared to scattering. For a slab of



infinite thickness, the reflectance according to the K-M theory is given by (1), Using the

Binomial theorem,

[ g™

From (3) and (4), we get

21,

:"1-':: _xl'l'.u
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Under the condition p, ,-"lu; <=1 this becomes,

K_Z2Ha
5

(133

(14}

(15}

Y

[t should be pointed out that the same relationship can be obtained by simply setting x =0 in (4)

instead of invoking the condition pu,"[u;i <=1, Due to the problem of physically unrealistic values

occurring if the second term in (4) is used (a5 was mentioned in the introduction), x = 0 is

assumed in this analysis and the results are compared with those obtained when x # 0 ic. the

relatonships given by Star et al and Brinkworth. Substituting for KJS using (L&), Eq. (14)

becomes
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Cormnparing the coefficients of (127 and ( 17) term by termn,
C'E
—=— il —== (1)
NN 6w
From which we get,
12
0
Substituting in ( 16]).
2
2
K_ZoHa (20}
5 & My
Also, from i4) with x = 0 and using (1Y) we get,
12
C

When the incident light is diffuse, as discussed in the previous section, the value of Cg was found
(22)

to be 4.0, Substituting in (19), we get ¥ = *y and from (21) we get.

3
5=E|.|..s

and
Q



K_8pa (23)
5 3

This corresponds to the relationship obtained by Gate. Thus, the process of obtaining (19) is

validated using the case of diffusc incident beamn.

The question that arises now is whether this relationship bebween the K-M and the transport
scattering cocfficients holds beyond the limiting range of IJH_JI'III.L; << 1 from which it was derived.
To investigate this, R calculated using the exact RTE for the range of optical propertics
specificd in section 2 were compared with that obtained from the K-M cquation after estimating
the K-M cocfficients using (3} and (22) and also by those given by Star er. af. and Brinkworth.
The range of optical propertics considered translates to |.|Hl.l'l|.|fli = 73which in twn translates
top, A =0.577. From figure 3(a), it is scen that for this wide range of optical properties, (22) —

which is the same as the expression given by Gate — provides the best agreement with the exact

values of R . The extra term contained in the formulas of Brinkworth and Star e of, which
includes a contribution fom pg to the KM scattering cocfficient (Eq. 4), actually results in a
deviation from the RTE especially with increasing values of py and as discussed carlier, it leads

to singularitics for certain combinations of the optical propertics. From figure 3(b) it is scen that
the error in using the K-M cquation with 5 given by (22 leads to an error of < 3% over the range

of optical propertics considered.

[n the section 3.1 it was shown that the value of € depends on the nature of the incident beam

and when the incident beam is collimated Cpis a function of g which can be empirically



described by a second-order polynomial. Thus, by substituting the g-dependent form of Cp given

by (#) into (21} we obtain the relatonship between the K-M scattering coefficient and the

transport scattering coefficient for the case when the incident beam is collimated:

12 -
= 5 He (24)
(48446 +0.472g - 0.114g~)

[n this case, (207 can be rewritten as

KK (25)
HeFlE]
where
fy
fig)= 3 (26
Crlel

Cpig)is given by (B). Eq. 25 indicates that for the case of collimated incident beamn just as for

the diffuse incident beam, the ratio K8 still comesponds to a ratio of absorption to scattering
effects cxcept that the functional dependence on g for the scattering component (denominator) is

different.

Figurc 4 shows a comparison of R computed with the exact RTE solved using the doubling
method when the incident beam is collimated with those computed from the K-M cquation with
5 given by (24). For comparison purposes, R predicted by the K-M equation using the
relationship (22) which was derived for diffusc incident beamn is also plotted. In figure 4, the

comparisons are shown for a low (g = 0.1 and a high (g = .9 value of g. It is seen that (24



shows excellent agrecment with the exact values of R . The residuals plots, figures 4ic) and (d)

show that when the g dependence is taken into account the error is less than 5% over most of
range considered. The emors increase at the higher range but still stay within 10%. This indicates
that the forn given by (20 also holds for collimated incident beamn as long as the dependence of

Cp on g is taken into account.

[n practice, cven though the K-M equations are derived for the specific case of diffuse incident
beam of infinite width, the K-M transform (Eqg. 2) has been applied for analysing spectra even
when the incident bearn is not diffuse. The forcgoing analysis indicates that the K-M transform

achicves the objective of obtaining a measure that gives the rabo of absorption to scattering

cffects for both diffuse and collimated incident beam.

4 Conclusions

[n this manuscript, the relationship between the K-M scattering and the transport scattering
cocfficient was obtained through a semi-cmpirical approach. This approach gives the same result
as that given by Gatc when the incident beamn is diffuse. It is shown that although the K-M
cquation is derived based on diffuse incident light, it can also represent very well the reflectance

from a slab of infinite thickness when the incident light is collimated. However, in this casc the
relationship between 8§ and IJ;I'IHH to include a function that is dependent on g. This study also
shows that the relationships given by Star ef af and Brinkworth where 5 contains the effect of
H, I8 not applicable over a large range of optical properties. This study suggests that the
Fubelka-Munk transform achieves the ohjective of obtaining a measure that gives the rabio of

absorption to scattering effects for both diffuse and collimated incident beamn.



5 Acknowledgmenis

This work was funded by the EPSRC through grants GR/S5044 1,01 and GR/S50458101.

References:

2

G. Kortiim, Refleciance Spectroscopy (Springer-Verlag, [969).

. ML K. Gunde, I. K. Logar, Z. C. Orel and B, Orel, *Application of the Kubclka-Munk theory

to thickness-dependent diffuse reflectance of black paint in the mid-1R.” Appl. Spec. 49, 623-
629 (1995,

L. E. McMNeil and . H. French, “Light scattering from red pigment particles: Multiple
scattering in a strongly absorbing system,” J. Appl. Phys. 89, 283-293 (2001 ).

G, Dupuis and M. Menu, “Cluantitative characterisation of pigment mixtures used in art by
fibre-optics diffusc-reflectance spectroscopy,” Appl. Phys, A B3, 469-474 (2006).

1. Sirita, 5. Phanichphant and F. C. Meunier, *Ouantitative analysis of adsorbate
concentrations by diffuse reflectance FT-IR,” Anal. Chem. T9, 3912-3918 (2007).

P. Jeevanandam, R, 5. Mulukutla, M. Phillips, 5. Chaudhburi, L. E. Erickson and K. 1.
Klabunde, “*Mear infrared reflectance propertics of metal oxide particles,” J. Plvs, Chem,
111, 1912-1918 (2007}

B. 1. Brinkwaorth, “Interpretation of the Kubelka-Munk coefficients in reflection theory,”
Appl. Cpe 11, 1434-1435 (1972).

L. F. Gate, “Comparison of the photon diffusion model and Kubelka-Munk equation with the

cxact solution of the radiative transport cquation,” Appl. Clpr. 13, 236-238 (1974,



9. WM Star, 1P AL Marijnissen and M. 1. C. Van Gemert, “Light dosimelry in optical
phantoms and in tissues: . Multiple flux and transport theory,” Plys. Med. Biol. 33, 437-454
i 1988

L0, 8.L. Jacques, “Reflectance spectroscopy with optical fiber devices, and transcutancous
bilirubinometers,” Riomedical optical instrimentation and laser-assisted Riotechnology,
Proceedings af the NATO Advanced Science Instinete (Erice, Sicily, Kluwer Academnic
Publishers, Mov [0-22, 1995), eds. AM. Verga and Scheggi.

L1. 5. AL Prahl, "The Adding-Doubling Method." in Optical Thermal Response of Laser
Trradiated Tissue, AL ). Welch, and v, G, M. 1. C., eds. Plenum Press, Mew York, (1993), pp.
[01-129.

12, M. A, Velazeo-Roa, and 5. M. Thennadil, "Estimation of complex refractive index of
polydisperse particulate systems from multiple-scattered ultraviolet-visible-near-infrared

measurements” Applied Optics 46 3730-3733 (2007).



List of Figures:
Figurel. Reflectance from a slab of infinite thickness irmadiated by diffuse incident beam as a
function of p_é: ja) R over the whole range considered in this study. (b) Comparison
of R o calculated using Eq.i5} in the “linear™ region. {cjError in using Eq.(3) in the “linear™

region.

Figurel. Reflectance from a slab of infinite thickness irradiated by collimated incident beam as a

function of p_d: (a) R, over the whole range considered in this study. (b) R for two (low and
highi values of g in the *linear” region. ic) T as a function of g estimated by ftting Eq. (3] to

exact values at different g,

Figured. Comparison of results for diffuse incident beam using K-M scattering coefficient 5

computed with relationships given by Star et.al, Brinkworth and the present study. (a) Ro from
the K-M equation using the various relationships is compared to the exact RTE. (h) Relative

error of the K-M equation when (217 is used to related 5 with |.l; .

Figured. Comparison of results for collimated incident beam using K-M scattering coctficient 5
computed with (22) and (24). (a) R, when g=0.1; (b} R when g = 0.9; (c) Relative error when

g= 0.1 and (d) Relative error when g = 0.9
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Figurel. Rcflectance from a slab of infinite thickness irmadiated by diffuse incident beam as a
function ofp_é: (a) R over the whole range considered in this study. (b) Comparison

of R calculated using Eq.(5) in the “lincar”™ region. (c)Error in using Eq.(3) in the “linear™

region.
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Figurel. Feflectance from a slab of infinite thickness irradiated by collimated incident beam as a
function of p_é: ja) R over the whole range considered in this study. (b) R for two {low and
high) values of g in the “linear™ region. () Cy as a function of g cstimated by fitting Eq. (3) to
cxact values at different g,
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Figured. Comparison of results for diffuse incident beam using K-M scattering coefficient 5
computed with relationships given by Star er.al, Brinkworth and the present study. (a) R from

the K-M equation using the various relationships is compared to the exact RTE. (h) Relative
error of the K-M equation when (21 is wsed to related 5 with |.I.; .
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Figured. Comparison of results for collimated incident beam using K-M scattering cocfficient 5
computed with (22 and (24). (a) R when g=0.1; (b} R when g =0.9; (c) Relative error when
g= 0.1 and (d} Relative error when g = 0.9,



