Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Bifurcation analysis of the twist-Freedericksz transition in a nematic liquid-crystal cell with pre-twist boundary conditions

Grinfeld, M. and Da Costa, F.P. and Gartland, E.C. and Pinto, J.T. (2009) Bifurcation analysis of the twist-Freedericksz transition in a nematic liquid-crystal cell with pre-twist boundary conditions. European Journal of Applied Mathematics, 20 (3). pp. 269-287. ISSN 0956-7925

[img]
Preview
PDF (strathprints013690.pdf)
strathprints013690.pdf

Download (344kB) | Preview

Abstract

Motivated by a recent investigation of Millar and McKay [Mol. Cryst. Liq. Cryst., 435, 277/[937]-286/[946] (2005)], we study the magnetic field twist-Fr´eedericksz transition for a nematic liquid crystal of positive diamagnetic anisotropy with strong anchoring and pre- twist boundary conditions. Despite the pre-twist, the system still possesses Z2 symmetry and a symmetry-breaking pitchfork bifurcation, which occurs at a critical magnetic-field strength that, as we prove, is above the threshold for the classical twist-Fr´eedericksz tran- sition (which has no pre-twist). It was observed numerically by Millar and McKay that this instability occurs precisely at the point at which the ground-state solution loses its monotonicity (with respect to the position coordinate across the cell gap). We explain this surprising observation using a rigorous phase-space analysis.