Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

A weighted communicability measure applied to complex brain networks

Crofts, J.J. and Higham, D.J. (2009) A weighted communicability measure applied to complex brain networks. Interface, 6 (33). pp. 411-414. ISSN 1742-5689

[img]
Preview
PDF (strathprints013675.pdf)
strathprints013675.pdf

Download (145kB) | Preview

Abstract

Recent advances in experimental neuroscience allow non-invasive studies of the white matter tracts in the human central nervous system, thus making available cutting-edge brain anatomical data describing these global connectivity patterns. Via magnetic resonance imaging, this non-invasive technique is able to infer a snap-shot of the cortical network within the living human brain. Here, we report on the initial success of a new weighted network communicability measure in distinguishing local and global differences between diseased patients and controls. This approach builds on recent advances in network science, where an underlying connectivity structure is used as a means to measure the ease with which information can flow between nodes. One advantage of our method is that it deals directly with the real-valued connectivity data, thereby avoiding the need to discretise the corresponding adjacency matrix, that is, to round weights up to 1 or down to 0, depending upon some threshold value. Experimental results indicate that the new approach is able to extract biologically relevant features that are not immediately apparent from the raw connectivity data.

Item type: Article
ID code: 13675
Keywords: matrix functions, network science, neuroscience, unsupervised classification, Mathematics, Biomedical Engineering, Biochemistry, Biomaterials, Bioengineering, Biotechnology, Biophysics
Subjects: Science > Mathematics
Department: Faculty of Science > Mathematics and Statistics
Depositing user: Mrs Irene Spencer
Date Deposited: 21 Dec 2009 13:09
Last modified: 21 May 2015 11:06
URI: http://strathprints.strath.ac.uk/id/eprint/13675

Actions (login required)

View Item View Item