Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

A weighted communicability measure applied to complex brain networks

Crofts, J.J. and Higham, D.J. (2009) A weighted communicability measure applied to complex brain networks. Interface, 6 (33). pp. 411-414. ISSN 1742-5689

[img]
Preview
PDF (strathprints013675.pdf)
Download (141Kb) | Preview

    Abstract

    Recent advances in experimental neuroscience allow non-invasive studies of the white matter tracts in the human central nervous system, thus making available cutting-edge brain anatomical data describing these global connectivity patterns. Via magnetic resonance imaging, this non-invasive technique is able to infer a snap-shot of the cortical network within the living human brain. Here, we report on the initial success of a new weighted network communicability measure in distinguishing local and global differences between diseased patients and controls. This approach builds on recent advances in network science, where an underlying connectivity structure is used as a means to measure the ease with which information can flow between nodes. One advantage of our method is that it deals directly with the real-valued connectivity data, thereby avoiding the need to discretise the corresponding adjacency matrix, that is, to round weights up to 1 or down to 0, depending upon some threshold value. Experimental results indicate that the new approach is able to extract biologically relevant features that are not immediately apparent from the raw connectivity data.

    Item type: Article
    ID code: 13675
    Keywords: matrix functions, network science, neuroscience, unsupervised classification, Mathematics, Biomedical Engineering, Biochemistry, Biomaterials, Bioengineering, Biotechnology, Biophysics
    Subjects: Science > Mathematics
    Department: Faculty of Science > Mathematics and Statistics
    Related URLs:
      Depositing user: Mrs Irene Spencer
      Date Deposited: 21 Dec 2009 13:09
      Last modified: 05 Sep 2014 13:47
      URI: http://strathprints.strath.ac.uk/id/eprint/13675

      Actions (login required)

      View Item

      Fulltext Downloads: