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Shape grammars have been used to explore design spaces through design genera-
tion according to sets of shape rules with a recursive process. Although design 
space exploration is a persistent issue in computational design research, there have 
been few studies regarding the provision of more preferable and refined outcomes 
to designers. This paper presents an approach for the categorisation of design out-
comes from shape grammar systems to support individual preferences via two cus-
tomised viewpoints: (i) absolute preference values of shape rules and (ii) relative 
preference values of shape rules with shape rule classification levels with illustra-
tive examples. 

Introduction 

One valuable technique to conceive designs is to generate design alterna-
tives. Computational advancements and the evolution of modern design 
processes have opened new lines of research based on generative systems. 
The purpose of generative systems is not always to reach a unique optimal 
solution but instead to display a range of design alternatives. There are 
many different variants of generative design systems. They typically gen-
erate satisfactory designs starting from little or nothing, being guided by 
performance criteria within a given design space [1]. One way of obtaining 
sets of satisfactory designs is to define preference values for generative 
rules. In other words, instead of randomly generating lots of designs and 
then looking for meaningful solutions, it is sometimes more reasonable to 
define rules that generate only sequences of designs that are accord with 
designer preferences. 

Shape grammars [2] are production systems that generate designs ac-
cording to sets of shape rules. These rules are of the form ba → , where a 
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and b are both labelled shapes, and are applicable to a shape S if there is a 
transformation that imbeds a in S. A shape rule is applied by replacing the 
transformed shape a in S with the similarly transformed shape b. These al-
low the construction of complex shapes from simple shape elements. The 
potential for applying shape grammars to explore design spaces has been 
applied in areas such as architectural and consumer product design [3]. 
Despite a history going back decades [4], progress in computer implemen-
tation of shape grammar systems has been slow [5]. This is partly due to 
complexities in object representation used in such systems [6] but is also 
possibly a consequence of the characteristic of producing large, possibly 
an infinite number of outcomes [7]. As a result relatively few researchers 
have attempted to categorise outcomes from shape grammar systems. 
While diversity and number of outcomes may be appreciated by designers, 
they may wish to limit this number in order to reduce their efforts to find 
preferable (or appropriate) ones. 

The research described here results from an ongoing project concerning 
design synthesis and shape generation (DSSG). The project explores how 
designers generate shapes and how shape computation systems might sup-
port designers without impinging upon their creativity. The aim of this pa-
per is to present an approach to categorising design outcomes from shape 
grammar systems to support individual preference. It offers the possibility 
of providing more preferable and refined outcomes to designers based on 
their own ways of shape generation. Here, the categorisation of design out-
comes is not intended to reflect a measure of similarity or style but instead 
is intended to reflect the likelihood that designs would be produced by a 
designer. This likelihood is based on experimental data concerned with 
analysing how designers specify and manipulate shapes when exploring 
designs [8]. This analysis led to the definition of shape rules believed to 
capture the manipulations typically used by designers, and to data related 
to the frequency that such rules were used to explore designs.  

Clustering via customisable viewpoints 

Shape rules can formalise the creative process that involves the generation 
of designs, the selection of the preferable, and the seeding of a new genera-
tion, until a competent design is found or the entire design space has been 
explored [9]. This process, however, may not be ideal for design explora-
tion since design spaces tend to be immense and the probability of obtain-
ing a satisfactory design in a reasonable length of time is very small. 
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One possible way to customise design outcomes is by categorisation 
according to the similarity of shape characteristics. Clusters of designs 
may be organised into a hierarchical structure where they are broken down 
into subclusters [10]. In this case, a hierarchical classifier is needed to di-
vide the classes into contextual subgroups, which are then further divided 
to produce a tree structure defining relationships between classes [11]. A 
number of methods are extant for hierarchical clustering depending on the 
area of application, e.g. in biological taxonomy, psychology and cognitive 
science [12], physics [13], and artificial intelligence [14]. 

Some investigations have been conducted into multiple viewpoints for 
clustering. Researchers have found that different results can be obtained 
when the same data set is analysed using a different clustering strategy 
during computational clustering [15, 16]. For example, Howard-Jones [17] 
carried out an experiment in which subjects looked at a geometrical shape, 
generating as many interpretations of the shape as possible based on dif-
ferent viewpoints. Duffy and Kerr [18] suggest that designers require dif-
ferent viewpoints from past designs and abstractions in order to facilitate 
the effective utilisation of past design knowledge, and pointed out the need 
to support different viewpoints, termed ‘Customised Viewpoints’ (CV). 
Manfaat and Duffy [19] extended this theory to support the effective utili-
sation of spatial layouts for ship design by hierarchical levels of abstrac-
tions according to designers’ needs. To maximise the capability of CV, the 
selection of criteria for clustering that are appropriate to the data being in-
vestigated is crucial [20]. 

Due to the characteristics of Shape Grammar systems, which poten-
tially produce large numbers of outcomes [7], categorising design out-
comes could facilitate more widespread use of this design paradigm. As 
the main aim of CV is to classify designs via different viewpoints, adapting 
the concept of CV could provide a way of categorising and refining out-
comes by individual viewpoints and preferences. 

Preference values and classification of shape rules 

Understanding designers’ preferences when interacting with shapes is 
needed to utilise CV with shape grammars. As a part of the DSSG project, 
a sketch observation experiment [8] to identify shape rules in shape trans-
formation was undertaken. Six architects and eight product designers with 
various ranges of professional experience were involved in the experiment. 
They responded to a series of conceptual design tasks and produced an 
output of nearly 300 sketches. Entire sketching activities and sketch 
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strokes were recorded to analyse shape transformation using three crite-
ria—Decomposition, Reinterpretation and Design family—which were ap-
plied to three tasks consisting of short design briefs and initial design 
stimuli.  

Shape rules from the experiment 

As a result of our preliminary experiment, 7 general shape rules (Table 1) 
and 14 detailed shape rules (Table 2) were identified. These can be re-
garded as the personal rules of the participants. The hierarchical classifica-
tion was suggested due to the similarities among shape rules. Note that the 
outline transformation rule in Table 1 denotes ‘changing outline shape in-
cluding stretching and contour manipulation’ while the structure transfor-
mation rule indicates ‘changing shape position including rotation, transla-
tion and symmetry’. 

Table 1 General shape rules identified 
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Table 2 Detail shape rules identified 
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Shape rules in a higher (general) level could contain a number of detailed 
rules in their lower levels (Figure 1). From our experiment, the outline 
transformation rule comprises a number of similar shape rules i.e., bend, 
straighten, change length/width and change angles, while the structure 
transformation rule includes flip/mirror, change shape direction, split 
shape, and change shape position rules. The bend rule in the detailed 
shape rules denotes ‘giving curvature to a shape’, while the straighten rule 
indicates the opposite meaning; the change angles rule indicates ‘changing 
an interior angle of a shape’; and the combine shapes rule means ‘adding 
and merging a new shape to an existing shape’, while the add rule adds a 
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new shape without merging them. Indeed, classification of these shape 
rules can be further refined; for example, the bend rule can produce differ-
ent types of curvature to a shape captured in shape rules (e.g. soft radius, 
sharp radius, a curve with rising curvature and so on). 

 
Fig1. Hierarchical classification of the identified shape rules 

In addition to providing an objective means of analysis, these rules pro-
vide a means for formally generating design alternatives. Note that the 
graphical representations of these rules express shape transformations in an 
abstract way and are not meant to represent the exact transformation of a 
shape, meaning that the same rule may be applied to different shapes and 
transform them in different ways. For example, the first (R12) and third 
(R12) rules for the design outcome S01 in the Appendix are the same ab-
stract rule—straighten—but are applied under different shape transforma-
tions. In addition, this list of rules is not by any means complete; they 
were, however, sufficient to capture participants’ shape transformations. 
The identified shape rules are then hierarchically classified, and the rules 
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R3 to R7 are directly applied to level-2 because they do not have child rules 
(Figure 1). 

Preference values of shape rules 

Some rules were used by participants significantly more than others, e.g. 
change shape length/width (R12), change view (R7), add (R4), and 
straighten (R12) were used 2 to 10 times more than others (Table 3). This 
result suggests that it may be possible to (i) identify priorities of shape 
rules, (ii) calculate the preference values for each shape rule based on the 
frequency of rule use and (iii) use the preference values as speculative 
tools to provide customisable categorisations of design outcomes. The 
preference value was calculated by normalisation between 0.0 and 1.0 
based on the sum of total use for each rule from the experiment’s results 
(see the last column in Table 3), and the value can be incrementally up-
dated whenever new results from experimentation are added. For example, 
use of the substitute rule was hardly observed in our experiment; thus the 
preference value is considered as 0.0. It can be, however, changed depend-
ing on the result of additional experiments. 

Table 3 The use of the shape rules in architectural design. The numbers in each 
task indicate the frequency of rule use and the number of participants who used 
the rule (in parentheses). 

Rank Shape Rules Task 1 Task 2 Task 3
Total 
use of 

the rule 

Preference 
value  

(normalised) 
1 Change length/width (R13) 35 (6) 9 (4) 11 (3) 55 0.239130 
2 Change view (R7) 0 (0) 22 (6) 21 (5) 43 0.186957 
3 Add (R4) 18 (4) 8 (3) 7 (3) 33 0.143478 
4 Straighten (R12) 22 (6) 0 (0) 2 (2) 24 0.104348 
5 Change shape position (R24) 13 (5) 0 (0) 1 (1) 14 0.060870 
6 Bend (R11) 9 (2) 0 (0) 2 (2) 11 0.047826 
7 Delete (R5) 10 (2) 1 (1) 0 (0) 11 0.047826 
8 Change shape direction (R22) 10 (5) 0 (0) 0 (0) 10 0.043478 
9 Combine shapes (R25) 5 (3) 4 (3) 0 (0) 9 0.039130 
10 Split shape (R23) 0 (0) 0 (0) 8 (2) 8 0.034783 
11 Change angles (R14) 5 (2) 1 (1) 0 (0) 6 0.026087 
12 Flip/Mirror (R21) 3 (2) 2 (1) 0 (0) 5 0.021739 
13 Cut (R6) 0 (0) 0 (0) 1(1) 1 0.004348 
14 Substitute (R3) 0 (0) 0 (0) 0 (0) 0 0.0 
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Formalisation of customised viewpoints 

Design outcomes can be categorised differently depending on customised 
viewpoints. For example, shapes S1 and S2, which are generated by a num-
ber of shape rules with a sequential manner, e.g. {S1|Ra,Rb,Ra,Rd} and 
{S2|Ra,Rc,Re} (Figure 2), can be in the same cluster if the shape rule Ra is a 
most important criterion, while they could be classified in a different clus-
ter in other cases.  
 

            
                            (a)                                                             (b) 
Fig2. Example shapes S1 and S2 with respective rule sequences 

Here an experimental approach to categorising outcomes is presented 
which calculates and sorts a preference value for each outcome. The pref-
erence value P for each outcome is normalised between 0.0 and 1.0, and 
can be obtained via two customised viewpoints: (i) absolute P by the fre-
quency of shape rule use; (ii) relative P by shape rule classification level. 
To calculate the above P for each outcome, a number of criteria need to be 
predefined: (i) a hierarchical (multi-level) classification of shape rules 
(Figure 1); (ii) a weight value Qm for each step of a shape rule sequence; 
(iii) a preference value 

nRV  for each shape rule Rn (see the last column in 
Table 3). For now, each Qm is equally distributed depending on the maxi-

mum number of sequence steps from a design outcome, i.e. 
L

Qm
1

=  where 

L is the maximum number of sequence steps. The distribution of Qm, how-
ever, could be adjusted in future research, e.g. the first and last step of a 
sequence could have more weight if we consider those to be more effective 
for outcomes than others. The details of the formalisation of P by each 
viewpoint are described in the following sections. 
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Customised viewpoints by absolute preference values 

According to our experimental data [8], designers respond positively to 
specific rules which can affect the types of design outcomes. In this paper, 
design outcomes are categorised based on the preference value of shape 
rules because a preference value offers one way of representing a personal 
design intention. An absolute P1 for the above shape S1, which is generated 
by a four step rule sequence, i.e. {S1|Ra,Rb,Ra,Rd}, is calculated by all the 
rule values with respective sequential weights. This value can be used to 
determine the order of outcomes without any classifications, so designers 
could limit the number of preferable outcomes from the entire set of possi-
ble outcomes. Considering the sequence of rule application for the shape 
S1, the absolute P1 is calculated as 

                       43211 QVQVQVQVP
daba RRRR +++=  (1) 

Because Qm is equally distributed here, the absolute P1 is the same as 
the sum of 

nRV  divided by the sequence length, and can be summarised as 

                       mRRRR QVVVVP
daba
)(1 +++=  (2) 

Thus, a general shape S1 can be calculated as below when Vi is the sum 
of the preference values of used shape rules for shape S1: 

                       mii QVP =  (3) 

Customised viewpoints by relative preference values with a rule classi-
fication level 

Sometimes designers may wish to limit outcomes by the generality of 
shapes [18, 19]. In this case, setting the outcome criteria by classification 
levels of shape rules would be useful because a higher classification level 
of shape rules allows a broad range of shape types while a lower level al-
lows more specific shape types. When a shape rule classification has a 
depth of k, there are k different relative P values, based on the depth in the 
hierarchy. In this viewpoint, a relative P1 for the above shape S1 is calcu-
lated by the different levels of shape rule classification rather than 

nRV . 

Consider )(kRn
V  is the P of the kth level of a shape rule classification that 

contains Rn, and is the sum of 
nRV  in the (k+1)th level (Figure 3). Then the 

relative 
k

P1  for the above shape S1 by the kth level of shape rule classifica-
tion is calculated using Equation (2) as 
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                       mkRkRkRkR QVVVVP
dabak

)( )()()()(1 +++=  (4) 

Note that the preference value of each shape rule is the sum of its child 
rules, e.g. the preference value of R11 in the level-2 in Figure 3 is the sum 
of the preference values of {R111,R112,R113}, which are the child rules of 
R11. If Rn is located in a lowest level, 

nRV  is applied to )(kRn
V ; thus the 

relative preference value by lowest level is equal to the absolute preference 
value. 
 

 
Fig3. Example of the hierarchical classification of preference values 

Examples with customised viewpoints 

The selected design outcomes used in this paper were created as a part of 
our experiment [8]. From the initial shape (a candle holder) we generated 
115 outcomes that have a maximum of 10 rule sequences (Table 4 and 
Figure 4); 95 of the outcomes are derived from the subsequences of the fi-
nal 20 outcomes (S01 – S20) while omitting duplicated designs. For exam-
ple, the outcome S05 in Figure 4 is generated by four sequential rules (see 
Appendix) which has four possible designs, i.e. S05-1 by {R11}, S05-2 by 
{R11,R11}, S05-3 by {R11,R11,R13}, and S05-4 by {R11,R11,R13,R5}. The rule 
sequences of S05-1 and S05-2, however, are already generated by S03; 
thus only two designs S05-3 and S05-4 are used and a total 115 outcomes 
are generated.  
 
 

R11 
(R111+R112+R113)

LEVEL-1 LEVEL-2 LEVEL-3 

R12

R111

R112

R113

R3

R2

R12

R3

R2

R3 

R2 

R1 
(R11+R12) 



 S. Lim, M. Prats, S. Chase and S. Garner 10 

Table 4 The initial shape and the twenty final outcomes of the rule sequences 

Initial 
shape 

Final design outcomes 

S01 

 

S02 

 

S03 

 

S04 

 

S05 

 

S06 

 

 

S07 

 

S08 

 

S09 

 

S10 

 

 

 

S11 

 

S12 

 

S13 

 

S14 

 

S15 

 

S16 

 

S17 

 

S18 

 

S19 

 

S20 

 

 

Fig4. Rule sequences of the design outcomes in Table 4. The numbers in paren-
theses indicate how many outcomes were selected from the subsequences of each 
final outcome (S01 – S20). See the Appendix for all the design outcomes. 

 
The formalised approach with the two customised viewpoints is respec-

tively evaluated with the above examples. In this evaluation, we analysed 
20 outcomes (top 10 and bottom 10) by each viewpoint from the total of 
115 outcomes. All the preference values of the outcomes are calculated by 
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two customised viewpoints: (i) absolute P, which is equal to the relative P 
with rule classification level-2 in this paper (Tables 5 and 6), and (ii) rela-
tive P with rule classification level-1 (Tables 7 and 8). Note that since the 
categorisations are focused on the manner of generating designs the results 
may not be dependent on shape similarity; however, they are considered as 
the designs most likely to be produced by designers with particular prefer-
ences. 

Outcomes by absolute preference values 

Based on the absolute P for each rule, the outcomes were sorted as shown 
in Tables 5 and 6. Because the preference values are likely the design in-
tentions of the experiment’s participants, they cannot reflect general deisgn 
preferences. This, however, can be an alternative way to support personal 
preferences, as previously described. 

Table 5 Top 10 and bottom 10 outcomes based on absolute preference values 

Top 10 outcomes 
S14_01 

 

S16_03 

 

S16_04 

 

S05_03

 

S01_01

 

S16_08

 

S16_05

 

S16_09

 

S05_04 

 

S08_02 

 
Bottom 10 outcomes 

S17_03 

 

S04_03 

 

S06_04 

 

S18_04

 

S20_04

 

S17_02

 

S04_01

 

S04_02

 

S06_01 

 

S06_02 

 

Table 6 Respective absolute preference values (P) and rule sequences of the out-
comes in Table 5 

Rank Outcomes P Applied rule sequence 
1 S14_01 0.1434779 R4 
2 S16_03 0.115942 R12 – R6 – R13 
3 S16_04 0.1130435 R12 – R6 – R13 – R12 
4 S05_03 0.111594 R11 – R11 – R13  
5 S01_01 0.104348 R12  
6 S16_08 0.1043478 R12 – R6 – R13 – R12 – R11 – R11 – R11 – R13  
7 S16_05 0.1 R12 – R6 – R13 – R12 – R11 
8 S16_09 0.0980676 R12 – R6 – R13 – R12 – R11 – R11 – R11 – R13 – R5 

S05_04 0.095652 R11 – R11 – R13 – R5  9 S08_02 0.095652 R5 – R4  
106 S17_03 0.031884 R11 – R3 – R5 

S04_03 0.0304347 R21 – R21 – R5  107 S06_04 0.0304347 R21 – R21 – R11 – R11  
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109 S18_04 0.0293478 R11 – R11 – R21 – R3  
110 S20_04 0.025 R11 – R3 – R5 – R6  
111 S17_02 0.023913 R11 – R3  

S04_01 0.021739 R21  
S04_02 0.021739 R21 – R21  
S06_01 0.021739 R21  

112 

S06_02 0.021739 R21 – R21  

Outcomes by relative preference values 

Unlike the outcomes by absolute P, the outcomes by relative P with the 
rule classification level-1 show a visible classification in their rule se-
quences (Tables 7 and 8).  

Table 7 Top 10 and bottom 10 outcomes using relative preference values with 
rule classification level-1 

Top 10 outcomes 
S01_03 

 

S03_03 

 

S05_03 

 

S01_01

 

S01_02

 

S03_01

 

S03_02

 

S10_04

 

S01_06 

 

S01_05 

 
Bottom 10 outcomes 

S02_04 

 

S02_08 

 

S02_03 

 

S02_06

 

S08_02

 

S14_02

 

S14_04

 

S14_03

 

S02_01 

 

S02_02 

 
 

For the top 10 outcomes, the first eight (where the preference value is 
0.417391) are generated using the outline rule family R1 (R11 – R14) only, 
while the remaining two are generated using mixed rules, i.e. they have 
one structure rule (R21) from the R2 family as well. For the bottom 10 out-
comes, the most frequently used shape rules are delete (R5), add (R4) and 
change shape position (R24). Although the absolute P for add (R4) is the 
third biggest value (Table 3), the R4 rule is considered as the rules that 
have the lowest P in this viewpoint. This is because (i) some rules that 
have the lowest P such as change angles (R14) and flip/mirror (R21) are 
classified as outline (R1) and structure (R2) rules respectively and they are 
the two largest P, and (ii) cut (R6) and substitute (R3) rules were rarely 
used in the 115 outcomes. The result seems well suited to the purpose, i.e. 
identifying outcomes that share the same rule classifications. 
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Table 8 Respective relative preference values (P) and rule sequences of the out-
comes in Table 7 

Rank Outcomes P Applied rule sequence 
S01_03 0.417391 R12 – R11 – R12 
S03_03 0.417391 R11 – R11 – R11 1 
S05_03 0.417391 R11 – R11 – R13 
S01_01 0.4173909 R12  
S01_02 0.4173909 R12 – R11 
S03_01 0.4173909 R11  
S03_02 0.4173909 R11 – R11  

4 

S10_04 0.4173909 R11 – R11 – R11 – R11 
9 S01_06 0.381159 R12 – R11 – R12 – R21 – R11 – R12 
10 S01_05 0.373913 R12 – R11 – R12 – R21 – R11  

106 S02_04 0.1097825 R5 – R5 – R24 – R4  
107 S02_08 0.098913 R5 – R5 – R24 – R4 – R4 – R6 – R24 – R6  
108 S02_03 0.0985507 R5 – R5 – R24  
109 S02_06 0.097826 R5 – R5 – R24 – R4 – R4 – R6  

S08_02 0.095652 R5 – R4  
S14_02 0.095652 R4 – R5 110 
S14_04 0.095652 R4 – R5 – R5 – R4  

113 S14_03 0.07971 R4 – R5 – R5 
S02_01 0.047826 R5  114 
S02_02 0.047826 R5 – R5  

Discussion 

The design examples used in this paper attempt to reflect the kind of 
shapes and shape transformations used in the conceptual stage of design, 
where designs tend to be vague and ambiguous. For this reason, shape 
rules that express transformations of a shape in an abstract way without 
representing an exact transformation of the shape have been used as previ-
ously mentioned. As an extension of the presented approach for categorisa-
tion of designs, use in later stages of design would require more detailed 
shape rules. For example, change length/width (R13) could be detailed with 
definitions of length and width, and with proportional rate of change. Ad-
ditionally, a preference value for a single rule could be extended to certain 
lengths of rule sequences, e.g. a preference value for the rule sequence 
{R1,R2,R3} could support more in-depth personal preferences in a shape 
generation process.  

On the other hand, we also tested another viewpoint regarding the com-
plexity of outcomes based on multiple criteria: (i) the length of a rule se-
quence; (ii) the number of shape rules used; and (iii) the complexity type 
of a shape rule. The complexity type was determined by whether it con-
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tributes to the complexity of outcomes. For example, the add (R4) rule in-
creases complexity, the delete (R5) rule decreases it, but other rules do not 
affect complexity. The result of the complexity viewpoint, however, was 
not very usable. It seems the length of a rule sequence does not affect the 
complexity of design outcomes. Instead, there might be more crucial crite-
ria to determine the complexity of outcomes such as the combination of 
used rules, and different weightings for each step of shape rule sequence, 
etc. 

Currently, the suggested approach is designed as a post-categorisation 
method after generating designs. As it seems that generating sequences of 
designs that are aligned with design intentions could effectively reduce de-
sign spaces [21], we may need to adapt our approach as a pre-
categorisation method, which defines personal design intentions before 
generating designs. 

Conclusion 

The experimental approach that uses a hierarchical classification of shape 
rules with preference value of each shape rule offers multiple ways of 
categorising outcomes depending on designers’ needs. A preference value 
of each design outcome, which is used as a speculative tool to identify per-
sonal preference of shape generation, has been defined via two criteria, i.e. 
(i) an absolute preference value based on the frequency of rule use, and (ii) 
a relative preference value based on shape rule classification levels. A hi-
erarchical classification of shape rules and a preference value for each 
shape rule in this paper have been identified from the preliminary experi-
ment, and the examples from our experiment are used to evaluate the pro-
posed approach.  

The result of categorised outcomes with the worked examples reveals 
the possibility of providing more preferable and refined outcomes to de-
signers. Therefore, this work illuminates a phenomenon that might be the 
subject of future research of the current project, and reveals potential di-
versity in the exploitation of shape grammar systems. Future work is con-
cerned with detailing abstracted rule transformation using exact shape ex-
pression, adding a criterion regarding complexity of outcomes, applying 
the approach as a pre-categorisation method, and exploring how these re-
sults can inform the development of computational tools intended to sup-
port conceptual design. 
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Appendix 

 
The sequential rule processes of the design outcomes selected in the evaluation 
section are depicted in this appendix to help the reader’s understanding. 
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Design Outcome – S06 
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