Picture of flying drone

Award-winning sensor signal processing research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in award-winning research into technology for detecting drones. - but also other internationally significant research from within the Department of Electronic & Electrical Engineering.

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Unsteady finite-depth effects during resistance tests on a ship model in a towing tank

Day, Alexander H. and Clelland, David and Doctors, Lawrence J. (2009) Unsteady finite-depth effects during resistance tests on a ship model in a towing tank. Journal of Marine Science and Technology, 14 (3). pp. 387-397. ISSN 0948-4280

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper covers an extension of the study of Doctors et al. (J Ship Res 52(4):263-273, 2008) on oscillations in wave resistance during the constant-velocity phase of a towing-tank resistance test on a ship model to the case of relatively shallow water. We demonstrate here that the unsteady effects are very prominent and that it is essentially impossible to achieve a steady-state resistance curve in a towing tank of typical proportions for a water-depth-tomodel-length ratio of 0.25. This statement is particularly true in the speed region near a depth Froude number of unity. However, on the positive side, we show here that an application of unsteady linearized wave-resistance theory provides an excellent prediction of the measured total resistance, when one accounts for the form factor in the usual manner. Finally, a simple application of the results to the planning and analysis of towing-tank tests is presented.