Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Potential of global positioning system (GPS) to measure frequencies of oscillations of engineering structures

Psimoluis, Panos and Pytharouli, Stella and Karambalis, Dimitris and Stathis, Stiros (2008) Potential of global positioning system (GPS) to measure frequencies of oscillations of engineering structures. Journal of Sound and Vibration, 318 (3). pp. 606-623. ISSN 0022-460X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Global Positioning System (GPS) has been successfully used to measure displacements of oscillating flexible civil engineering structures such as long suspension bridges and high-rise buildings, and to derive their modal frequencies, usually up to 1 Hz, but there is evidence that these limits can be exceeded using high frequency GPS receivers. Based on systematic experiments in computer controlled oscillations with one- and three-degrees of freedom we investigated the potential of GPS, first to record higher oscillation frequencies, at least up to 4 Hz at the minimum resolution level of this instrument for kinematic applications (5 mm), and second, to identify more than one dominant frequency. Data were processed using least squares-based spectral analysis and wavelet techniques which permit to analyze entire time series, even those of too short duration or those characterized by gaps, in both the frequency and the time domain. The ability of GPS to accurately measure frequencies of oscillations of relatively rigid (modal frequencies 1-4 Hz) civil engineering structures is demonstrated in the cases of two bridges. The outcome of this study is that GPS is suitable for the identification of dynamic characteristics of even relatively rigid (modal frequencies up to 4 Hz) civil engineering structures excited by various loads (wind, traffic, earthquakes, etc.) if displacements are above the uncertainty level of the method (5 mm). Structural health monitoring of a wide range of structures appears therefore a promising field of application of GPS.