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This paper studies the estimation of a semi-strong GARCH(1,1) model when it does not have a

stationary solution, where semi-strong means that we do not require the errors to be independent

over time. We establish necessary and sufficient conditions for a semi-strong GARCH(1,1) process

to have a unique stationary solution. For the non-stationary semi-strong GARCH(1,1) model, we

prove that a local minimizer of the least absolute deviations (LAD) criterion converges at the rate

√
n to a normal distribution under very mild moment conditions for the errors. Furthermore, when

the distributions of the errors are in the domain of attraction of a stable law with the exponent

κ ∈ (1, 2), it is shown that the asymptotic distribution of the Gaussian quasi-maximum likelihood

estimator (QMLE) is non-Gaussian but is some stable law with the exponent κ ∈ (0, 2). The

asymptotic distribution is difficult to estimate using standard parametric methods. Therefore, we

propose a percentile-t subsampling bootstrap method to do inference when the errors are independent

and identically distributed, as in Hall and Yao (2003). Our result implies that the least absolute

deviations estimator (LADE) is always asymptotically normal regardless of whether there exists a

stationary solution or not even when the errors are heavy-tailed. So the LADE is more appealing

when the errors are heavy-tailed. Numerical results lend further support to our theoretical results.
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1 Introduction

Since the seminal work of Engle (1982), ARCH/GARCH models have been widely used in

finance and economics, see Shephard (1996) and Rydberg (2000). The first order generalized

autoregressive conditional heteroscedastic (GARCH (1,1)) model is given by

Xt = σtεt and σ2
t = ω + αX2

t−1 + βσ2
t−1,

where ω > 0, α ≥ 0, β ≥ 0 are unknown parameters, while {εt} is a sequence of independent and

identically distributed (i.i.d) random variables with mean 0 and variance 1, and εt is independent

of {Xt−k, k ≥ 1} for all t, see Bollerslev (1986).

Nelson (1990) proved that there exists a unique strictly stationary and ergodic solution to

GARCH(1,1) model if and only if

E log(αε2
t + β) < 0.

Bougerol and Picard (1992) extended this result to the GARCH(p,q) case. Pan et al. (2008)

establish this result for a more general class of models under an additional moment condition

that E|εt|̺ < +∞ for some ̺ > 0. Many authors have studied the asymptotic inference for

stationary ARCH/GARCH models. When the errors have finite fourth moment, i.e., Eε4
t < ∞,

the consistency and asymptotic normality of quasi-maximum likelihood estimators (QMLE) for

ARCH/GARCH models have been established under different conditions, see Weiss (1986), Lee

and Hansen (1994), Lumsdaine (1996), Berkes et.al. (2003) etc. Mikosch and Straumann (2002)

adapted Whittle estimation to a heavy-tailed GARCH(1,1) model where Xt has a Pareto-like
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tail with tail index κ > 4. They showed that the Whittle estimator converges in distribution to

an infinite series of a sequence of κ/4-stable random variables provided κ < 8 and Eε8
t < +∞,

and a normal random variable provided κ > 8. For a heavy-tailed ARCH (1) processes where

Xt has a Pareto-like tail with tail index 0 < κ < 4, Davis and Mikosch (1998) established the

asymptotic theory for sample autocorrelation functions with the speed of convergence slower

than
√

n, and Mikosch and Stărică (2000) extended the results to GARCH(1,1) model. In the

case that Eε4
t = ∞, the asymptotic theory for QMLE becomes quite complicated and difficult.

Hall and Yao (2003) studied the QMLE for heavy-tailed GARCH models with the errors in

the domain of attraction of a stable law with exponent between 1 and 2. They showed that

the asymptotic distribution may be non-Gaussian and the convergence rate is slower than
√

n.

Straumann (2005) established similar results for a more general class of GARCH-type models.

Peng and Yao (2003) show that, in contrast, the least absolute deviations estimator (LADE) is

asymptotically Gaussian with convergence rate
√

n provided Eε2
t < +∞. In fact, their conditions

on the error moments can be reduced to E|εt|̺ < +∞ for some ̺ > 0, which is more appealing

in dealing with heavy-tailed processes; see Pan et al.(2008).

Jensen and Rahbek (2004 a, 2004 b) were the first to consider the asymptotic theory of

the QMLE for non-stationary ARCH/GARCH models. They showed that the likelihood-based

estimator for the parameters in the first order ARCH/GARCH model is consistent and asymp-

totically Gaussian in the entire parameter region regardless of whether the process is strictly

stationary or explosive, i.e. even for the case that E log(αε2
t +β) ≥ 0. But they assumed that the

errors have finite fourth moment, i.e. Eε4
t < ∞. So the inferential theory for a non-stationary

ARCH/GARCH model with errors with infinite fourth moments remains open.

Economic and financial time series often appear to be non-stationary and/or driven by

heavy-tailed noises, see Mandelbrot (1963), Mittnik et al. (1998), Mittnik and Rachev (2000),

Engle and Rangel (2005), and Polzehl and Spokoiny (2004). Furthermore, as Lee and Hansen

(1994) have pointed out, there is no reason to assume that all of the conditional dependence is

contained in the conditional variance. Thus, we assume that {εt} are stationary and ergodic,

and call a GARCH(1, 1) model with such errors a semi-strong GARCH(1, 1) model, following

Drost and Nijman (1993). Lee and Hansen (1994) established the asymptotic normality of the

QMLE for strictly stationary semi-strong GARCH(1, 1) model with errors such that their fourth
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moments conditional on the past are uniformly bounded. If we assume that the conditional

second and fourth moments of the error εt equals its unconditional second and fourth moments

a.s. respectively, the proof of Jensen and Rahbek (2004 a, 2004 b) still gets through for non-

stationary semi-strong GARCH (1, 1) models with minor modification. Hence, it is meaningful

to study the estimation problem for non-stationary semi-strong ARCH/GARCH models with

errors with infinite fourth moment.

In this paper, we give necessary and sufficient conditions for a semi-strong GARCH(1, 1)

model to have a unique stationary solution. We then study the estimation for the non-stationary

semi-strong GARCH(1, 1) model in the case that Eε4
t = ∞. We show that the proposed LADE

is asymptotically normal if the conditional expectation of |εt|2+δ is uniformly bounded for some

δ > 0 and the conditional densities of log ε2
t given the past satisfy some regular conditions. If

the errors of a non-stationary GARCH(1, 1) model are i.i.d., the moment condition of εt for the

LADE to have the asymptotic normality can be reduced to E|εt|̺ < +∞ for some ̺ > 0. Based

on the asymptotic normality of LADE, some inference on the model can be easily undertaken.

For example, a Wald test of some interesting hypotheses can be built. We also investigate the

properties of the (Gaussian) QMLE when some mixing condition holds and the distribution of

the errors is in the domain of attraction of a stable law with exponent between 1 and 2 and

the tails of the conditional distribution of |ε2
t − 1| given the past are uniformly bounded by the

tail of some distribution which is in the domain of attraction of a stable law with the same

exponent as ε2
t . The asymptotic distribution of the QMLE is non-Gaussian but some stable law

with unknown index κ ∈ (1, 2), which makes inference difficult, and we will use the percentile-t

subsampling bootstrap method employed by Hall and Yao (2003) to do statistical inference.

Thus, the proposed LADE seems more appealing for the non-stationary semi-strong GARCH(1,

1) model with heavy-tailed errors. Finally, the asymptotic results for QMLE and LADE hold

independently of the choice of initial values and the scale parameter.

The rest of paper is organized as follows. Section 2 discusses when a semi-strong GARCH(1,

1) model defines a strictly stationary and ergodic solution and when it has no stationary ver-

sion. Section 3 discusses estimation of a non-stationary semi-strong GARCH(1, 1) model. Sub-

section 3.1.1 gives the LADE and its asymptotic properties and Subsection 3.1.2 presents a

Wald test based on the result of Subsection 3.1.1. The asymptotic results of QMLE for a
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non-stationary semi-strong GARCH(1, 1) model with κ-stable errors are presented in Subsec-

tion 3.2.1 and Subsection 3.2.2 provides subsampling bootstrap methods to construct confidence

intervals. Section 4 reports some numerical results. Section 5 concludes. The appendix contains

the proofs of all results.

We denote by
P−→,

d−→ and
Lp−→ the convergence, respectively, in probability, in distribution

and in Lp. Denote the Euclidean norm of a vector V by ‖ V ‖. Let A⊤ denote the transpose

of a matrix or a vector A, and let C be a generic constant which may be different at different

places. I(·) stands for the indicator function through the whole paper.

2 The solution of the semi-strong GARCH(1, 1) model

Consider the first order semi-strong GARCH(1, 1) model given by

Xt = σtεt and σ2
t = ω + αX2

t−1 + βσ2
t−1, (2.1)

where ω > 0, α ≥ 0, β ≥ 0 are unknown parameters, and {εt} is a strictly stationary and ergodic

sequence of random variables. Denote

γ = E log(α0ε
2
t + β0),

where (ω0, α0, β0) is the true value of the parameter of model (2.1). For the semi-strong

GARCH(1, 1) model, we can not get the necessary and sufficient conditions for stationarity

under the original assumptions on {εt}. However, imposing some mixing condition on {εt} when

γ = 0, we can get Theorem 1 which shows that model (2.1) has a unique strictly stationary and

ergodic solution if and only if γ < 0. The assumptions needed are in the following:

A1. εt is strictly stationary and ergodic, ε2
t is non-degenerate (εt thus need to be different from

scaled symmetric Bernoulli or degenerate random variables) and E|εt|̺ < +∞ for some

̺ > 0.

A2. In the case of γ = 0, ε2
t is ϕ-mixing with

∑+∞
n=1 ϕ

1/2
n < +∞, where

ϕn = sup
A∈F0

−∞,B∈F+∞
n ,P r(A)>0

∣

∣Pr(B) − Pr(B|A)
∣

∣
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and F j
i = σ(εt, i ≤ t ≤ j).

Theorem 1. Suppose that Assumptions A1-A2 hold and ω0 > 0. Then it follows that the semi-

strong GARCH(1,1) model (2.1) defines a unique strictly stationary and ergodic solution if and

only if γ < 0. Furthermore, σ2
t −→ +∞ a.s provided γ ≥ 0.

Remark 1. When εt is i.i.d. with Eε2
t = 1, the condition for strict stationarity γ < 0 is

weaker than the requirement for weak stationarity, β0+α0 < 1. What drives the surprising result

is the well- known fact that the second moments of a stationary solution to model (2.1) are finite

if and only if β0 + α0 < 1. So that, while strict stationarity still holds if γ < 0 and β0 + α0 ≥ 1,

weak stationarity fails since variances are infinite and autocovariances are not defined. In the

Gaussian ARCH(1) case, one can have even α0 < 0.5exp
(

− Ψ(0.5)
)

≈ 3.56, where Ψ(·) is the

Euler psi function. Thus the set of allowable parameter values for strict stationarity is larger than

the set of values for weak stationarity. This situation is a bit more complicated when Eε2
t = ∞.

In particular, Nelson (1990) shows that when εt is standard Cauchy, γ = 2 ln(α
1/2
0 +β

1/2
0 ), so that

the set of allowable parameter values for strict stationarity is smaller than the set α0 + β0 < 1

(although in that case the set of parameter values implying weak stationarity is empty due to

the infinite second moments).

3 Estimation for a non-stationary semi-strong GARCH(1,1) model

We assume the initial value of Xt is X0 and that the unobserved σ2
0 is parameterized by η0,

i.e. σ2
0 = η0. The parameter of the model (2.1) is then φ = (α, β, ω, η)⊤ with true value

φ0 = (α0, β0, ω0, η0)
⊤. Denote θ = (α, β)⊤ and ψ = (ω, η)⊤ with true value θ0 = (α0, β0)

⊤ and

ψ0 = (ω0, η0)
⊤ respectively. Let

σ2
t (φ) = ω + αX2

t−1 + βσ2
t−1(φ), (3.1)

with σ2
0(φ) = η and σ2

t (φ0) = σ2
t .

The least absolute deviations estimator (LADE) for model (2.1) is defined as a minimizer of
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the following objective function

Sn(φ) =

n
∑

t=u+1

| log X2
t − log σ2

t (φ)|, (3.2)

where σ2
t (φ) is defined in (3.1), u = u(n) is a nonnegative integer. The quasi-maximum likelihood

estimator (QMLE) for model (2.1) is a minimizer of

ln(φ) =
1

n

n
∑

t=1

(

log σ2
t (φ) +

X2
t

σ2
t (φ)

)

, (3.3)

where σ2
t (φ) is defined by (3.1). These objective functions can be computed quite cheaply and

many algorithms are available for finding the minima.

We collect here some notation that will be useful in the sequel. Let Zt(φ) = log X2
t −log σ2

t (φ)

and denote At(φ) = (A1t(φ), A2t(φ))⊤, where

A1t(φ) =
∂σ2

t (φ)

∂α

1

σ2
t (φ)

=

t
∑

j=1

βj−1
X2

t−j

σ2
t (φ)

, (3.4)

A2t(φ) =
∂σ2

t (φ)

∂β

1

σ2
t (φ)

=
t

∑

j=1

βj−1
σ2

t−j(φ)

σ2
t (φ)

. (3.5)

Then,

∂Zt(φ)

∂α
= −A1t(φ),

∂Zt(φ)

∂β
= −A2t(φ),

∂ln(φ)

∂α
=

1

n

n
∑

t=1

(

A1t(φ) − X2
t

σ2
t (φ)

A1t(φ)
)

,
∂ln(φ)

∂β
=

1

n

n
∑

t=1

(

A2t(φ) − X2
t

σ2
t (φ)

A2t(φ)
)

.

Let At = (A1t, A2t)
⊤ =: At(φ0). Define Dt(a, b) = (D1t(a, b), D2t(a, b))⊤, where a > 0, b > 0

and

D1t(a, b) =
+∞
∑

j=1

aj−1ε2
t−j

j
∏

k=1

1

α0ε2
t−k + b

, D2t(a, b) =
+∞
∑

j=1

aj−1
j

∏

k=1

1

α0ε2
t−k + b

.

Denote Dt = (D1t, D2t)
⊤ with Dit =: Dit(β0, β0), i = 1, 2.

Remark 2. By Lemma 3 in the appendix of this paper, we use two stationary ergodic

processes D1t and D2t to approximate A1t and A2t respectively.
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3.1 Least absolute deviation estimator

3.1.1 Asymptotic properties of the LADE

The QMLE can be viewed as an extended version of least squares estimation, which is known

to be sensitive to heavy-tails, while the LADE would be more robust, see Peng and Yao (2003).

In this subsection, we establish the properties of the LADE defined as a minimizer of (3.2) for

the non-stationary semi-strong GARCH(1,1) model (2.1) with heavy-tailed errors in the sense

that the errors have infinite fourth moment. Denote Ft = σ(εs, s ≤ t). We need the following

assumptions.

A3. For some δ > 0, there exists a Gδ < ∞ such that E(|εt|2+δ|Ft−1) ≤ Gδ < ∞ a.s.

A4. Conditional on Ft−1, log(ε2
t ) has zero median and a differentiable density function ft(x)

satisfying ft(0) ≡ f(0) > 0, and supx∈R,t≥1 |f ′
t(x)| < B1 < ∞.

A5. u → ∞ and u/n → 0, as n → ∞.

Remark 3. The class of adapted sequences with bounded conditional moments is quite

wide and includes, for instance, the classes of randomly stopped sequences and martingale

transforms (e.g., Remark 3.3 in de la Pena et al.(2003)). Interestingly, moment inequalities for

nonnegative adapted sequences and martingales with bounded conditional moments have the

same form as under independence (see also the discussion in Sections B.3 and B.4 in Nze and

Doukhan, (2004)). This is the essence of why the results of Jensen and Rahbek (2004 a, 2004

b) still hold for non-stationary semi-strong GARCH (1, 1) models when the conditional second

and fourth moments of the error εt equal its unconditional second and fourth moments a.s.

respectively.

Theorem 2. Suppose that γ ≥ 0 and Assumptions A1-A4 hold.

(i) Denote Sn(φ)|φ=(θ⊤,ψ⊤
0 )⊤ by Sn(θ) with u = 0. Then there exists a local minimizer

θ̂ = (α̂, β̂)⊤ of Sn(θ) such that

√
n(θ̂ − θ0)

d−→ N
(

0,
1

4f2(0)
Ω−1

)

,
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where Ω = E(DtD
⊤
t ) and Sn(φ) is defined in (3.2),

(ii) Let ψ∗ be any fixed value of ψ and denote Sn(φ)|φ=(θ⊤,ψ⊤
∗ )⊤ by Sn∗(θ). Assume, in

addition, γ > 0 and Assumption A5 hold. Then there exists a local minimizer θ̂∗ = (α̂∗, β̂∗)⊤ of

Sn∗(θ) such that
√

n(θ̂∗ − θ0)
d−→ N

(

0,
1

4f2(0)
Ω−1

)

,

where Ω and Sn(φ) are the same as in (i) of this theorem.

Remark 4. Since Assumption A4 assumes log(ε2
t ) has zero median conditional on Ft−1,

we have P (ε2
t > 1|Ft−1) = 1/2 implying P (ε2

t ≤ 1/2|Ft−1) < 1, which and Assumption A3

together ensure the validity of Lemma 3. If {εt} are i.i.d., Assumption A3 is redundant, and

in this case, the moment condition for εt in Theorem 2 can be reduced to E|εt|̺ < ∞ for some

̺ > 0.

Remark 5. The result of (ii) implies that (α, β) can be estimated by taking any value of ψ.

One may estimate ψ, but the asymptotic properties of the estimated ψ have not been obtained.

3.1.2 Wald test for linear hypotheses

In this subsection, we use the same notation as in Subsection 3.1.1. We can use the result of

Theorem 2 to do some inference for a subset of the parameters of the model (2.1). For example,

we may consider a general form of linear null hypothesis

H0 : Γθ0 = Λ,

where Γ is a s × 2 constant matrix with rank s ≤ 2 and Λ is a s × 1 constant vector. A Wald

test statistic may be defined as

Pn = 4f̂2
∗ (0)(Γθ̂∗ − Λ)⊤

(

ΓΩ̂−1
∗ Γ⊤)−1

(Γθ̂∗ − Λ)

and we reject H0 for large values of Pn. In the above expression

f̂∗(0) =
1

nbwn

n
∑

t=1

K

(

log ε̂2
t∗

bwn

)

, ε̂2
t∗ =

X2
t

σ2
t (φ̂∗)

, and Ω̂∗ =
1

n

n
∑

t=1

[

At(φ̂∗)A
⊤
t (φ̂∗)

]

,

where φ̂∗ = (θ̂⊤∗ , ψ⊤
∗ )⊤, ψ∗ = (ω∗, η∗)⊤ is some fixed value of ψ, K(·) is a kernel function on

R and bwn > 0 is a bandwidth. By Theorem 2 and using the same method of Theorem 3 in
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Pan et. al. (2007), we can obtain that f̂∗(0) and Ω̂∗ are consistent estimators for f(0) and Ω

respectively. Thus, we have the following theorem.

Theorem 3. Suppose that the conditions of Theorem 2 hold. Moreover, we assume that the

kernel function K(·) is bounded, Lipschitz continuous and of finite first moment. Let bn → 0

and nb4
n → ∞, as n → ∞. Then it follows that Pn

d−→ χ2
s.

3.2 The Gaussian QMLE

3.2.1 Asymptotic properties of the QMLE

In this subsection, we give the asymptotic behavior of QMLE defined as a minimizer of (3.3)

for a non-stationary semi-strong GARCH(1,1) model when the distributions of the errors are

in the domain of attraction of a stable law with the exponent κ ∈ (1, 2). Jensen and Rahbek

(2004b) have established the consistency and asymptotic normality of the QMLE for model (2.1)

with i.i.d. errors under the conditions γ ≥ 0 and Eε4
t < ∞. The asymptotic properties of the

QMLE in Jensen and Rahbek (2004b) still hold for the non-stationary semi-strong GARCH(1,1)

model if we assume in addition that E(εt|Ft−1) = 0, E(ε2
t |Ft−1) = 1, and E(ε4

t |Ft−1) = Eε4
t a.s.

However, we will show that the limiting distribution of QMLE for non-stationary semi-strong

GARCH(1,1) model is non-Gaussian but some stable law if the following assumption holds.

A6. E(εt|Ft−1) = 0 a.s., E(ε2
t |Ft−1) = 1 a.s., and the distribution of ε2

t is in the domain of

attraction of a stable law with the exponent κ ∈ (1, 2). Moreover, there exists a positive

random variable Y with distribution function FY such that

sup
t≥1

Pr
(

|ε2
t − 1| > x|Ft−1

)

≤ 1 − FY (x), a.s (3.6)

for sufficiently large x, where 1 − FY (x) ∼ x−κLY (x) as x → ∞ and LY (x) is a slowly

varying function which means that limx→∞
LY (λx)
LY (x) → 1 for any λ > 0.

A7. lim infy→+∞ Uε(y)/UY (y) = 2λ0 > 0, where UY (y) =
(

1
1−FY

)↼
(y) = inf{x : 1

1−FY (x) ≥
y}, Uε(y) =

(

1
1−Fε

)↼
(y) = inf{x : 1

1−Fε(x) ≥ y} and Fε(x) is the distribution function of

|ε2
t − 1|.
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A8. |ε2
t − 1| is strongly mixing with geometric rate, namely,

α(k) = sup
A∈σ

(

(ε2t −1)Dt;t>k

)

B∈σ

(

(ε2t −1)Dt;t≤0

)

|Pr(A ∩ B) − Pr(A)Pr(B))| ≤ Cιk → 0, k → ∞,

where 0 < ι < 1 and C are constants. Furthermore, we assume (ε2
t − 1)Dt is strongly

mixing with geometric rate too.

Remark 6. Denote RVρ = {H : limy→∞ H(yx)/H(y) = xρ, for any x > 0}. Under

Assumption A6, 1−Fε(x) ∈ RV−κ and 1−FY (x) ∈ RV−κ, and then we know that Uε(y) ∈ RV1/κ

and UY (y) ∈ RV1/κ by the theory of regular variation, see Resnick (1987). Thus, Uε(y) =

y1/κQε(y) and UY (y) = y1/κQY (y), where Qε(x) and QY (x) are both slowly varying functions.

Here we give an example of a class of slowly varying functions ensuring Assumption A7 hold.

Let ℵ = {Q(y) : Q(y) = a(1 + by−ξ), ξ > 0, a > 0, b > 0}. It is easy to verify that for

any Q(y) ∈ ℵ and Q̃(y) ∈ ℵ, Q(y) and Q̃(y) are both slowly varying functions satisfying

limy→+∞ Q(y)/Q̃(y) = C > 0.

Denote ln(φ)|φ=(θ⊤,ψ⊤
0 )⊤ by ln(θ) and ln(φ)|φ=(θ⊤,ψ⊤

∗ )⊤ by ln∗(θ), where ln(φ) is defined in

(3.3), and ψ∗ = (ω∗, η∗)⊤ is some fixed value of ψ.

Theorem 4. Suppose γ ≥ 0 and Assumptions A2 and A6-A8 hold. Assume that εt has a

Lebesgue density g(x) and the origin lies in the closure of the interior of {g > 0}. Then it

follows that

(i)There exists a fixed open neighborhood U(θ0) of θ0 such that ln(θ) has a unique minimizer

θ̃ in U(θ0) with probability tending to one as n → ∞. Furthermore, θ̃ is consistent and

na−1
n (θ̃ − θ0)

d−→ Wκ,

where an = inf{x : P (ε2
t > x) ≤ 1/n} and Wκ is a non-degenerate κ-stable random vector.

(ii)If γ > 0 holds, the results in (i) hold for ln∗(θ).

Remark 7. First, Assumption A6 implies Assumption A3 and P (ε2
t ≤ 1/2|Ft−1) < 1,

thus the results of Lemma 3 hold. Second, in the case when {εt} are i.i.d., it is obvious that
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Assumption A7 and the latter part of Assumption A6 hold, and furthermore, we can prove that

Assumption A8 holds. In fact, by the definition of Dt, we have

Dt =
β0

α0ε2
t−1 + β0

Dt−1 +
( ε2

t−1

α0ε2
t−1 + β0

,
1

α0ε2
t−1 + β0

)⊤
. (3.7)

Thus, it follows that

σ
(

(ε2
t − 1)Dt; t > k

)

⊆ σ
(

Dt+1; t > k − 1
)

and σ
(

(ε2
t − 1)Dt; t ≤ 0

)

⊆ σ
(

Dt+1; t ≤ 0
)

.

Therefore,

sup
A∈σ

(

(ε2t −1)Dt;t>k

)

B∈σ

(

(ε2t −1)Dt;t≤0

)

|Pr(A ∩ B) − Pr(A)Pr(B))| ≤ sup
A∈σ

(

Dt+1;t>k−1

)

B∈σ

(

Dt+1;t≤0

)

|Pr(A ∩ B) − Pr(A)Pr(B)|.

But, (3.7), Assumption A6 and the conditions that εt has a Lebesgue density g(x) and the origin

lies in the closure of the interior of {g > 0} ensure that Dt satisfies the assumptions in Theorem

7.4.1 of Straumann (2005), which implies that Dt is strongly mixing with geometric rate.

3.2.2 Bootstrap methods

Note that from Theorem 4 the scale na−1
n depends intimately on the particular law in whose

domain of the distribution ε2
t lies. In fact, the scale depends on the unknown tail exponent κ.

Since the law is unknown, it is awkward to determine the scale empirically. In the following,

we use a similar method to that in Hall and Yao (2003) to demonstrate how to apply the result

of Theorem 4 in practice. In this subsection, we use the same notation as in Section 3.2.1 and

assume that the errors are i.i.d. Define

τ̂2 =
1

n

n
∑

t=1

ε4
t −

( 1

n

n
∑

t=1

ε2
t

)2
.

Using the same method of Theorem 3.1 in Hall and Yao (2003), we can obtain that

a−1
n

(

n(θ̃∗ − θ0)
⊤, n1/2τ̂

)⊤ d−→ ((W (1)
κ )⊤,W (2)

κ )⊤, (3.8)

where ((W
(1)
κ )⊤,W

(2)
κ )⊤ is a κ-stable vector with dimension 3 and θ̃∗ = (α̃∗, β̃∗)⊤ is a minimizer

of ln∗(θ). Obviously, (3.8) means that

n1/2 θ̃∗ − θ0

τ̂

d−→ W
(1)
κ

W
(2)
κ

(3.9)
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Due to (3.9), we can use the subsample bootstrap to approximate the distribution of θ̃∗ − θ0,

but we must take account of the fact that the errors {εt} are unknown. Suppose we observe a

sample X = {X1, · · · , Xn} from the model (2.1), a natural approach is to use the standardized

residuals computed by ε̃t = Xt/σ̃t, where σ̃t = σt(θ̃∗, ψ∗), 1 ≤ t ≤ n. Define

τ̃2 =
1

n

n
∑

t=1

ε̃4
t −

( 1

n

n
∑

t=1

ε̃2
t

)2

Then, by the same way as in Hall and Yao (2003), we have

a−1
n

(

n(θ̃∗ − θ0)
⊤, n1/2τ̃

)⊤ d−→ ((W (1)
κ )⊤,W (2)

κ )⊤, (3.10)

where W
(1)
κ and W

(2)
κ are the same as in (3.8). Result (3.10) demonstrates that the replacement

of ε̃t for εt comes at no cost.

Since we require that εt has mean 0 and variance 1, in practice we standardize ε̃t as follows

ε̂t =
ε̃t − n−1

∑n
j=1 ε̃j

(

n−1
∑n

j=1 ε̃2
j − (n−1

∑n
j=1 ε̃j)2

)1/2
.

Now we can construct confidence intervals using subsampling bootstrap. Suppose ε∗t , for 0 <

t < +∞ are drawn randomly from {ε̂t, t = 1, . . . , n}. Consider the process (conditional on X )

defined by X∗
t = σ∗

t ε
∗
t , where (σ∗

0)
2 = η∗ and

(σ∗
t )

2 = ω∗ + α̃∗(X
∗
t−i)

2 + β̃∗(σ
∗
t−j)

2, 0 < t < +∞.

Since θ̃∗ is a consistent estimator of θ0, it follows that the probability, conditional on X , of X∗
t

being non-stationary converges to 1 as n → +∞. Let m < n, and compute the QMLE θ̃∗∗ of

θ0 using the data set X ∗ = {X∗
1 , · · · , X∗

m}, namely, θ̃∗∗ = (α̃∗
∗, β̃

∗
∗)

⊤ is a maximizer of the quasi-

maximum likelihood function based on X ∗. Define ε̃∗t = X∗
t /σ̃∗

t , where (σ̃∗
t )

2 = ω∗+ α̃∗
∗(X

∗
t−1)

2 +

β̃∗
∗(σ̃

∗
t−1)

2, 1 ≤ t ≤ m. Let

(τ̃∗)2 =
1

m

m
∑

t=1

(ε̃∗t )
4 −

( 1

m

m
∑

t=1

(ε̃∗t )
2
)2

,

be the bootstrap versions of τ̂2. If m/n → 0, as in Hall and Yao (2003), it follows that

Pr
{

a−1
m

[

m(θ̃∗∗ − θ̃∗)
⊤,m1/2τ̃∗] ∈ V × [y1, y2]|X

}

−→ Pr
{(

(W (1)
κ )⊤,W (2)

κ

)

∈ V × [y1, y2]
}

, (3.11)

13



in probability for each cylindrical set V of R2 and all continuity points 0 < y1 < y2 < ∞ of W
(2)
κ ,

where W
(1)
κ and W

(2)
κ are the same as in (3.8). Therefore, multivariate confidence regions for θ0

can be developed. However, as Hall and Yao (2003) has pointed out, such regions can be difficult

to interpret. Notice that a two sided interval may be obtained by taking the intersection of the

two one-sided intervals, thus we shall consider only one-sided confidence interval for individual

parameter component. Given π ∈ (0, 1), let

Î1
π = inf

{

u : Pr[m1/2(τ̃∗)−1(α̃∗
∗ − α̃∗) ≤ u|X ] ≥ π

}

.

and

Î2
π = inf

{

u : Pr[m1/2(τ̃∗)−1(β̃∗
∗ − β̃∗) ≤ u|X ] ≥ π

}

.

By (3.11), we know both [α̃∗−n−1/2τ̃ Î1
π,+∞) and [β̃∗−n−1/2τ̃ Î2

π,+∞) have nominal coverage π

in the sense that Pr{α0 ∈ [α̃∗ − n−1/2τ̃ Î1
π,+∞)} → π and Pr{β0 ∈ [β̃∗ − n−1/2τ̃ Î2

π, +∞)} → π.

4 Numerical Properties

This section presents some numerical evidence on the performance of asymptotic results of

the proposed LADE and QMLE in finite samples through a simulation study. The data are

generated from the non-stationary GARCH(1,1) model (2.1) with the true parameter φ0 =

(0.1, 1, 0.1, 0.5)⊤. In all experiments, we use the sample size n = 600 with 1000 replications.

We first give some numerical comparisons between LADE and QMLE. Here we take u = 10

and consider four error distributions, t(2), t(3), t(4), and N(0, 1), where t(i) stands for Student’s

t-distribution with degree of freedom i, i = 2, 3, 4. Notice that the variances are infinite for

GARCH processes (2.1) with the true parameter φ0 = (0.1, 1, 0.1, 0.5)⊤ driven by all the error

distributions considered above, including the normal case N(0, 1). Figure 1 gives the boxplots

of the average absolute error (AAE)
(

|α̂ − 0.1| + |β̂ − 1|
)

/2 for both LADE and QMLE when

ω and η are fixed at their true values, namely, ω = 0.1 and η = 0.5. For heavy tailed errors,

i.e., t(2), t(3), and t(4), LADE outperforms QMLE. This is natural since LADE converges faster

than QMLE in this case by Theorem 1 and Theorem 2. As we expected, MLE is better when

the errors are normal. The boxplots of AAE for LADE and QMLE when ω and η take different

values are presented in Figure 2. Figure 2 indicates that there is almost no influence on the

estimation error of α and β when the values of ω and η vary; see Remark 5.
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Then we investigate numerically the construction of confidence intervals for model (2.1)

using bootstrap methods. For the sake of simplicity we only consider the case of the one sided

intervals [α̃∗−n−1/2τ̃ Î1
π, +∞) and [β̃∗−n−1/2τ̃ Î2

π, +∞). In this experiment, we take π = 0.9 with

1000 replications for bootstrap sampling and take (ω, η) = (0.1, 0.5), (0.3, 0.4), (0.1, 0), (0.2, 0.5)

respectively. Three error distributions, t(3), t(4), and t(5) are considered. To investigate the

impact of subsampling size m, we take m = 150, 200, 250, 300, 350, 400, 450, 500, 550, and

600 respectively. Figure 3 presents the difference of the nominal level and the real level of

the confidence intervals. Figure 3 indicates that the difference is very close to zero, and the

variation of (ω, η) has little impact on the results. Although the method is quite robust against

the selection of m, it seems that m = 400 is a good selection for almost all cases.

5 Conclusion

The contribution of this paper is to extend the domain of coverage of existing asymptotic theory

to cover non-stationary and heavy tailed GARCH processes. We found that the LADE estimator

is asymptotically normal even under our extremely demanding conditions, while the Gaussian

QMLE requires stronger moment conditions and even then may have non-normal limiting distri-

butions and slower rates of convergence. We provided explicit methods for conducting inference

for both estimation methods.

Our results have some practical significance. Ibragimov (2004) argues that a number of

economic and financial series can have very heavy tails. Although the tails of standardized

residuals from estimated GARCH models are typically lighter than the tails of the raw series

itself the residual series still has ‘heavy tails’ and in some cases the tail thickness may approach

the region where our theory is relevant.
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A Appendix

A.1 Proof of Theorem 1

Denote

yi = log(α0ε
2
i + β0) and St =

t−1
∑

i=0

yi.

First of all, we introduce a lemma.

Lemma 1. Suppose γ = 0 and the conditions of Theorem 1 hold. Then it follows that

lim sup
t→+∞

St = +∞, a.s.

Proof. Since yi is a measurable function of εi, Assumption A2 and the definition of ϕ-mixing

(see page 166 of Billingsley (1968)) ensure that {yi} is also ϕ-mixing and with
∑∞

n=1 ϕ̃
1/2
n < ∞,

where ϕ̃n is the ϕ-mixing coefficients of {yi}. Notice that for ̺ > 0, there exists some constant

C such that

log β0 < log(α0ε
2
i + β0) < C + (α0ε

2
i + β0)

̺/4.

By Assumption A1, we obtain that Ey2
i < +∞. Note that E(Yi) = γ = 0. Applying the

functional central limit theorem (see Theorem 20.1 of Billingsley (1968)), we have

1√
t
St

d−→ N(0, σ2), (A.1)

where σ2 = Ey2
0+2

∑∞
i=1 E(y0yi). Since {yi} is ergodic and A = {ω : lim supt→+∞ St(ω) = +∞}

is an invariant set, we obtain that Pr(A) = 0 or Pr(A) = 1. Notice that

Pr(A) = Pr
{

∩+∞
m=1 ∪+∞

t=m{St ≥ m}
}

= lim
m→+∞

Pr
{

∪+∞
t=m {St ≥ m}

}

≥ lim sup
m→+∞

Pr
{

Sm2 ≥ m
}

= 1 − Φ(1/σ) > 0,

where the last equality is from (A.1) and Φ(·) stands for the cumulative probability function of

a standard normal random variable. Thus, Pr(A) = 1, which means that lim supt→+∞ St = +∞
a.s.
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Proof of Theorem 1.

Sufficiency. Suppose γ < 0. By the ergodic theorem it follows that

1

n

n
∑

i=1

log(α0ε
2
t−i + β0) −→ γ < 0 a.s,

as n → ∞. Using the same argument of Theorem 2 of Nelson (1990), we obtain that semi-strong

GARCH(1,1) model (2.1) defines a unique strictly stationary and ergodic solution.

Necessity. Now we suppose the semi-strong GARCH(1,1) model (2.1) has a strictly stationary

and ergodic solution {Xt}. If γ > 0, we have

1

t
St −→ γ > 0, a.s,

as t → +∞ by the ergodic theorem, which implies that

St −→ +∞, a.s, (A.2)

as t → +∞. On the other hand, by reduction we have

σ2
t = σ2

0

t
∏

i=1

(α0ε
2
t−i + β0) + ω

[

1 +
t−1
∑

k=1

k
∏

i=1

(α0ε
2
t−i + β0)

]

≥ σ2
0

t
∏

i=1

(α0ε
2
t−i + β0)

= σ2
0

t−1
∏

i=0

(α0ε
2
i + β0).

Thus, log σ2
t ≥ log ω0 + St −→ +∞ a.s as t → +∞ by (A.2). However, this contradicts the

assumption that Xt a strictly stationary and ergodic solution. So, we have that γ ≤ 0. But,

Lemma 1 implies that γ 6= 0. This completes the proof.

A.2 Proof of Theorem 2

Let Zt(φ) = log X2
t − log σ2

t (φ). Put

Zt(θ) = Zt(φ)|φ=(θ⊤,ψ⊤
0 )⊤ , Zt∗(θ) = Zt(φ)|φ=(θ⊤,ψ⊤

∗ )⊤ ,

20



where θ = θ0 + 1√
n
v, v = (v1, v2)

⊤ ∈ R2. It is easy to verify θ̂ = θ0 + 1√
n
v̂ and θ̂∗ = θ0 + 1√

n
v̂∗,

where v̂ and v̂∗ are the minimizer of Tn(v) and Tn∗(v), respectively. Here

Tn(v) =
n

∑

t=u+1

(

|Zt(θ0 +
1√
n

v)| − |Zt(θ0)|
)

,

Tn∗(v) =
n

∑

t=u+1

(

|Zt∗(θ0 +
1√
n

v)| − |Zt∗(θ0)|
)

.

The proof of Theorem 2 needs the following lemmas.

Lemma 2. Suppose Assumptions A1 and A3 hold. Define qp(a, b) = E
{

[a/(α0ε
2
t +b)]p|Ft−1

}

. If

Pr(ε2
t ≤ 1

2 |Ft−1) < 1, then for any p ≥ 1, there exists a constant ρ such that qp(β0, β0) ≤ ρ < 1,

a.s. Furthermore, for any p ≥ 1, there exist some constants βL, βU , ρL and ρU such that

βL < β0 < βU , qp(βU , β0) ≤ ρU < 1 and qp(β0, βL) ≤ ρL < 1.

Proof. By Lemma 4 (1) of Lee and Hansen (1994), we have that

Pr(ε2
t ≤ 1

2
|Ft−1) ≤ r, a.s. (A.3)

with r = 1 − 1/
[

2(2+δ)/δG
2/δ
δ

]

∈ (0, 1). Denote the conditional distribution function of εt given

Ft−1 by Ft, then by (A.3) it follows that

qp(a, b) =

∫

{x2≤ 1
2
}

( a

α0x2 + b

)p
dFt +

∫

{x2> 1
2
}

( a

α0x2 + b

)p
dFt

≤
(a

b

)p
Pr(ε2

t ≤ 1

2
|Ft−1) +

( a

b + α0/2

)p
Pr(ε2

t >
1

2
|Ft−1)

=
( a

b + α0/2

)p
+

[(a

b

)p −
( a

b + α0/2

)p]
Pr(ε2

t ≤ 1

2
|Ft−1)

≤ ap

bp
· bp + (b + α0/2)pr − bpr

(b + α0/2)p
.

Therefore,

qp(β0, β0) ≤ ρ < 1, with ρ =
βp

0 + (β0 + α0/2)pr − βp
0r

(β0 + α0/2)p
.

Notice that the function h(a) = ap

βp
0
· βp

0+(β0+α0/2)pr−βp
0r

(β0+α0/2)p is continuous and increasing with h(β0) =

ρ < 1. Then, there exists some βU > β0 such that h(βU ) = ρU < 1, which means qp(βU , β0) ≤
ρU < 1. Similarly, we can prove that there exists some βL < β0 such that qp(β0, βL) ≤ ρL <

1.
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Lemma 3. Suppose Assumptions A1 - A3 hold. Then, it follows that E‖Dt‖k < ∞ for any

integer k > 0, Ait < Dit and

E(Dit − Ait)
p → 0,

1

n

n
∑

t=1

(Dit − Ait)
Lp→ 0, and

1

n

n
∑

t=1

(Dit − Ait)
2 Lp→ 0, i = 1, 2, (A.4)

for all p ≥ 1. Furthermore, for any p > 0, there exist some constants βL < β0 < βU such that

E‖Dt(β0, βL)‖p < ∞ and E‖Dt(βU , β0)‖p < ∞.

Proof. Since Lemmas 3 and 4 of Jensen and Rahbek (2004 b) deals with the case for A2t, we will

prove that the results hold for A1t in the following and the case for A2t is similar. By Lemma

2, it follows that

qp = E
{

[β0/(α0ε
2
t + β0)]

p|Ft−1

}

≤ ρ < 1, a.s.

for any p ≥ 1, where ρ is a constant independent with t. Using Minkowski’s inequality, we have

[

E(D1t)
p
]1/p ≤

∞
∑

j=1

{

E
[

β
(j−1)p
0 ε2p

t−j

j
∏

k=1

1

(α0ε2
t−k + β0)p

]

}1/p

≤ 1

α0

∞
∑

j=1

{

E
[

j−1
∏

k=1

( β0

α0ε2
t−k + β0

)p]
}1/p

=
1

α0

∞
∑

j=1

{

E
[

j−1
∏

k=2

( β0

α0ε2
t−k + β0

)p
E

(( β0

α0ε2
t−1 + β0

)p|Ft−2

)]

}1/p

≤ ρ1/p

α0

∞
∑

j=1

{

E
[

j−1
∏

k=2

( β0

α0ε2
t−k + β0

)p]
}1/p

≤ 1

α0

∞
∑

j=1

ρ(j−1)/p < ∞.

By Lemma 2, we can obtain with the same method as above that there exist some constants

βL < β0 < βU such that E‖Dt(β0, βL)‖p < ∞ and E‖Dt(βU , β0)‖p < ∞ for any p > 0. Next,

we will establish (A.4). From (3.4), we have A1t =
∑t

j=1 βj−1ε2
t−j

∏j
k=1

σ2
t−k

σ2
t−k+1

. Notice that

σ2
t−j

σ2
t−j+1

=
σ2

t−j

(α0ε2
t−j + β0)σ2

t−j + ω0
≤ 1

α0ε2
t−j + β0

,

we obtain A1t ≤ D1t holds. By theorem 1, for any fixed j,

β0

α0ε2
t−j + β0

−
β0σ

2
t−j

(α0ε2
t−j + β0)σ2

t−j + ω0
→ 0 a.s.,

22



which implies that

1

α0
≥ ε2

t−j

j
∏

k=1

β0

α0ε2
t−k + β0

−
βj

0X
2
t−j

σ2
t

→ 0 a.s. (A.5)

Therefore, L1 convergence holds by dominated convergence in (A.5). Now, using the same

statement as Lemma 4 of Jensen and Rahbek (2004 b), we can obtain (A.4) holds.

Lemma 4. Suppose that Assumptions A1-A4 hold. Then

n−1/2
n

∑

t=1

v⊤Atsgn(log ε2
t )

d−→ N(0, v⊤Ωv),

for any v ∈ R2, where sgn(x) stands for sign of x.

Proof. By Assumption A4, we obtain that E
(

v⊤Atsgn(log ε2
t )|Ft−1

)

= 0. Thus {v⊤Atsgn(log ε2
t )}

is a martingale difference with respect to Ft−1. First,

1

n

n
∑

t=1

E
(

[v⊤Atsgn(log ε2
t )]

2|Ft−1

)

=
1

n

n
∑

t=1

(v⊤At)
2 =

1

n

n
∑

t=1

(v⊤Dt)
2 +

1

n

n
∑

t=1

[(v⊤At)
2 − (v⊤Dt)

2]

P→ E((v⊤Dt)
2) = v⊤Ωv,

by Lemma 3 and the ergodic theorem. Next, we can verify the Linderberg condition. Notice

that Ait ≤ Dit, i = 1, 2 (see Lemma 3). Then, by dominated convergence theorem, for any

δ̃ > 0, we have

1

n

n
∑

t=1

E
[

(v⊤At)
2I(|v⊤At| ≥

√
nδ̃)

]

≤ 1

n
‖v‖2

n
∑

t=1

E
[

‖Dt‖2I(‖Dt‖ ≥
√

nδ̃/‖v‖)
]

= ‖v‖2E
[

‖Dt‖2I(‖Dt‖ ≥
√

nδ̃/‖v‖)
]

→ 0,

as n → ∞, since E‖Dt‖2 < ∞. Now we can obtain the result by applying the central limit

theorem for martingale differences in Brown (1971).

Lemma 5. Suppose that the conditions of Theorem 2 (ii) hold. Then it follows that

Tn(v) − Tn∗(v)
P−→ 0,

uniformly on compact sets.
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Proof. Notice that Lemma 2 of this paper ensures that Lemma 12, and Lemma 14 of Jensen

and Rahbek (2004b) still hold. By the mean value theorem, we have

sup
‖v‖≤M

|Zt(θ0 +
1√
n

v) − Zt∗(θ0 +
1√
n

v)|

= sup
‖v‖≤M

|∂Zt(φ̃)

∂ψ′ (ψ − ψ∗)| ≤ CD2t(β0, βL)rt,

where φ̃ = λ(θ0, ψ∗)⊤+(1−λ)(θ0, ψ0)
⊤ for some λ ∈ [0, 1], and βL > β0 satisfying E[D2t(β0, βL)]p <

∞ by Lemma 3 and E(rt)
p = rt for some 0 < p < 1 and 0 < r < 1 by Jensen and Rahbek

(2004b). Therefore, by Hölder’s inequality,

E
(

sup
‖v‖≤M

n
∑

t=u+1

|Zt(θ0 +
1√
n

v) − Zt∗(θ0 +
1√
n

v)|
)p/2

≤ Cp/2
n

∑

t=u+1

[

E(D2t(β0, βL))p
]1/2

rt/2 → 0

as n → ∞. But

sup
‖v‖≤M

|Tn(v) − Tn∗(v)| ≤ 2 sup
‖v‖≤M

n
∑

t=u+1

|Zt(θ0 +
1√
n

v) − Zt∗(θ0 +
1√
n

v)|.

This completes the proof of this lemma.

Proof of Theorem 2.

(i) Define

T+
n (v) =

n
∑

t=u+1

(|Zt(θ0) − n−1/2v⊤At| − |Zt(θ0)|).

It holds that for z 6= 0,

|z − y| − |z| = −ysgn(z) + 2(y − z){I(0 < z < y) − I(y < z < 0)}.

Noticing that Zt(ϕ0) = log ε2
t , we have

T+
n (v) = −n−1/2

n
∑

t=1

v⊤Atsgn(log ε2
t )

+ 2
n

∑

t=1

(n−1/2v⊤At − log ε2
t )[I(0 < log ε2

t < n−1/2v⊤At) − I(n−1/2v⊤At < log ε2
t < 0)]

=: J1n + J2n.
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By Lemma 4, we have J1n
d→ v⊤ξ, where ξ ∼ N(0, Ω). Now turning to J2n, let

Bnt = (n−1/2v⊤At − log ε2
t )I(0 < log ε2

t < n−1/2v⊤At),

and

Cnt = (n−1/2v⊤At − log ε2
t )I(n−1/2v⊤At < log ε2

t < 0).

Then
n

∑

t=1

EB2
nt =

n
∑

t=1

E
(

I(v⊤At > 0)

∫ n−1/2v⊤At

0
(n−1/2v⊤At − x)2ft(x)dx

)

≤
n

∑

t=1

E[

∫ n−1/2v⊤At

0
(n−1/2v⊤At − x)2(ft(x) − f(0))dx

+

∫ n−1/2v⊤At

0
(n−1/2v⊤At − x)2f(0)dx]

≤
n

∑

t=1

E
(

B1n
−2(v⊤At)

4 + f(0)n−3/2(v⊤At)
3
)

≤ C

n1/2
E

(

‖Dt‖3 + ‖Dt‖4
)

.

Hence

lim
n→∞

n
∑

t=1

EB2
nt = 0. (A.6)

Similarly, we can prove that

lim
n→∞

n
∑

t=1

EC2
nt = 0. (A.7)

Next, we will establish that
n

∑

t=1

E
[

(Bnt − Cnt)|Ft−1

] P−→ f(0)

2
E(v⊤Dt)

2.

Put

B1n =
n

∑

t=1

I(v⊤At > 0)

∫ n−1/2v⊤At

0
(n−1/2v⊤At − x)f(0)dx

B2n =
n

∑

t=1

I(v⊤At > 0)

∫ n−1/2v⊤At

0
(n−1/2v⊤At − x)(ft(x) − f(0))dx

C1n =
n

∑

t=1

I(v⊤At ≤ 0)

∫ 0

n−1/2v⊤At

(n−1/2v⊤At − x)f(0)dx

C2n =
n

∑

t=1

I(v⊤At ≤ 0)

∫ 0

n−1/2v⊤At

(n−1/2v⊤At − x)(ft(x) − f(0))dx
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Using the same method as (A.6), we can show that

B2n
P→ 0 and C2n

P→ 0 as n → ∞ (A.8)

By Lemma 3, we have

1

n

n
∑

t=1

(v⊤At)
2 P−→ E(v⊤Dt)

2, (A.9)

as n → +∞. Notice that

B1n + C1n =
f(0)

2n

n
∑

t=1

(v⊤At)
2,

then we obtain

n
∑

t=1

E
[

Bnt|Ft−1

]

= B1n + C1n + B2n + C2n
P−→ f(0)

2
E(v⊤Dt)

2

by (A.9) and (A.8). But, from (A.6) and (A.7), it follows that

V ar
(

n
∑

t=1

(

Bnt − Cnt − E((Bnt − Cnt)|Ft−1)
)

)

=
n

∑

t=1

V ar
(

Bnt − Cnt − E((Bnt − Cnt)|Ft−1)
)

≤
n

∑

t=1

2E(B2
nt + C2

nt) → 0.

Therefore,
n

∑

t=1

(Bnt − Cnt)
P→ f(0)

2
E(v⊤Dt)

2,

which implies that

J2n
P−→ f(0)v⊤Ωv.

Let T (v) = f(0)v⊤Ωv+v⊤ξ. Then the finite dimensional distributions of T+
n (v) converge to those

of T (v). But, since T+
n (v) has convex sample paths, this implies that the convergence is in fact

on C(R2) (see the proof of Proposition 1 in Davis and Dunsmuir (1997)). Let Ht(θ) = ∂2Zt(θ)
∂θθ′ ,

and we have supθ∈U(θ0) ‖Ht(θ)‖ ≤ ξt, where U(θ0) is some fixed neighborhood of θ0 and ξt is

strictly stationary and ergodic with E‖ξt‖ < ∞, see Jensen and Rahbek (2004b). Hence, the

result of (i) holds by a similar proof to that of Theorem 1 of Pan et. al (2005). (ii) By Lemma

5, we have

Tn∗(v)
d−→ T (v), on C(R2).

By the same argument as in (i), we obtain the result.
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A.3 Proof of Theorem 4

We need the following lemmas to prove Theorem 4.

Lemma 6. Suppose that Assumptions A6 and A7 hold. Then

a−1
n

n
∑

t=1

(ε2
t − 1)Dt − a−1

n

n
∑

t=1

(ε2
t − 1)At

P→ 0.

Proof. Define

HY (b) = E
[

Y 2I(Y ≤ b)
]

, bn = Uε(n), cn = UY (n),

Υnt = I(|ε2
t − 1| ≤ bn), Jnt = 1 − Υnt, τnt = E

[

(ε2
t − 1)Υnt|Ft−1

]

,

L1 =
n

∑

t=1

(ε2
t − 1)At, L2 =

n
∑

t=1

(ε2
t − 1)JntAt,

L3 =
n

∑

t=1

[

(ε2
t − 1)Υnt − τnt

]

At, L4 =
n

∑

t=1

τntAt,

where Uε(x) and UY (x) are defined in Assumption A7. Replacing At by Dt, we define L̃i in

the same way as the definition of Li, i = 1, · · · , 4. Note that (ε2
t − 1) is still in the domain of

attraction of a κ-stable law, and an = bn + 1 for sufficiently large n. Thus,

an ∼ bn, as n → ∞. (A.10)

By Theorem 2 of Feller (1971, P283), it follows that

lim
b→+∞

bE
[

Y I(Y > b)
]

HY (b)
=

2 − κ

κ − 1
and lim

b→+∞
b2Pr(Y > b)

HY (b)
=

2 − κ

κ
. (A.11)

Hence

lim
b→∞

E
[

Y I(Y > b)
]

bPr(Y > b)
=

κ

κ − 1
. (A.12)

From the definition of cn and Assumption A6, we obtain that, for any fixed λ > 0

lim
n→+∞

nPr(Y > cn) = 1, and lim
b→+∞

Pr(Y > λb)

Pr(Y > b)
= λ−κ (A.13)

By (A.11), (A.12) and (A.13), we have that for any fixed λ > 0

lim
n→∞

n

cn
E

[

Y I(Y > λcn)
]

= λ1−κ κ

κ − 1
and lim

n→∞
nHY (λcn)

c2
n

= λ2−κ κ

2 − κ
. (A.14)
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Since Assumptions A6-A7 imply that λ0 ≤ bn/cn ≤ 1 for sufficiently large n, (3.6) ensures that

E
(

|ε2
t − 1|Jnt|Ft−1

)

=

∫ +∞

0
Pr

(

|ε2
t − 1|Jnt > y|Ft−1

)

dy

=

∫ bn

0
Pr

(

|ε2
t − 1| > bn|Ft−1

)

dy +

∫ +∞

bn

Pr
(

|ε2
t − 1| > y|Ft−1

)

dy

≤
∫ bn

0
Pr

(

Y > bn

)

dy +

∫ +∞

bn

Pr
(

Y > y
)

dy

= E
(

Y I(Y > bn)
)

≤ E
[

Y I(Y > λ0cn)
]

for sufficiently large n. Therefore, it follows from Lemma 3, (A.14) and (A.15) that

E|L2 − L̃2|
bn

≤ 1

λ0cn

n
∑

t=1

E
[

(Dt − At)E(|ε2
t − 1|Jnt|Ft−1)

]

≤ n

λ0cn
E

[

Y I(Y > λ0cn)
] 1

n

n
∑

t=1

E(Dt − At) → 0.

This implies that

L2 − L̃2

bn

P→ 0. (A.15)

For L3, we have, from (3.6), that

E
{

[

(ε2
t − 1)Υnt − τnt

]2|Ft−1)
}

= E
[

(ε2
t − 1)2Υnt − τ2

nt|Ft−1)
]

≤ E
[

(ε2
t − 1)2Υnt|Ft−1)

]

= 2

∫ +∞

0
yPr

(

|ε2
t − 1|Υnt > y|Ft−1

)

dy

= 2

∫ bn

0
yPr

(

y < |ε2
t − 1| ≤ bn|Ft−1

)

dy

= 2

∫ bn

0
yPr

(

|ε2
t − 1| > y|Ft−1

)

dy − 2

∫ bn

0
yPr

(

|ε2
t − 1| > bn|Ft−1

)

dy

≤ 2

∫ A

0
ydy + 2

∫ bn

A
yPr

(

Y > y
)

dy

≤ A2 + E
[

Y 2I(Y ≤ bn)
]

+ 2

∫ bn

0
yPr

(

Y > bn

)

dy

≤ A2 + H(cn) + c2
nPr

(

Y > λ0cn

)

(A.16)
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for sufficiently large n. Notice that

E
{

[

(ε2
t − 1)Υnt − τnt

]

(Ait − Dit)
[

(ε2
s − 1)Υns − τnt

]

(Ais − Dis)
}

= 0

for t 6= s, i = 1, 2. Then, it follows from Lemma 3, (A.13), (A.14) and (A.16) that

E
(L

(i)
3 − L̃

(i)
3

bn

)2
=

1

b2
n

n
∑

t=1

E
{

(Ait − Dit)
2E

[

[(ε2
t − 1)Υnt − τnt]

2|Ft−1

]

}

≤ n

λ2
0c

2
n

[A2 + H(cn) + c2
nPr

(

Y > λ0cn

)

]
1

n

n
∑

t=1

E(Ait − Dit)
2 → 0,

where L
(i)
3 and L̃

(i)
3 denote the ith element of L3 and L̃3 respectively, i = 1, 2. Therefore,

L3 − L̃3

bn

P→ 0. (A.17)

Finally, we will show that

L4 − L̃4

bn

P→ 0. (A.18)

Notice that E
[

(ε2
t −1)|Ft−1

]

= 0. Then τn = −E
(

(ε2
t −1)Jnt

)

. Hence, using the same argument

as for (A.15), we declare that (A.18) holds. It is easily verified that

L1 = L2 + L3 + L4 and L̃1 = L̃2 + L̃3 + L̃4.

Combining (A.10), (A.15), (A.17) and (A.18), we complete the proof of this lemma.

Lemma 7. Suppose that the conditions of Theorem 4 hold. Then (ε2
t − 1)Dt has an extremal

index ∆ > 0.

Proof. Let us recall the definition of the extremal index (see Leadbetter et al.(1983)) first. We

say that a stationary process {ξn} has extrema index ∆ if for each ϑ > 0, there exists an(ϑ)

such that n
(

1 − F (an(ϑ))
)

→ ϑ and P (maxi=1,··· ,nξi ≤ an(ϑ)) → e−∆ϑ as n → ∞. Suppose by

contradiction that ∆ = 0. Let Yn = maxt∈{1,··· ,n}{|ε2
t − 1|Dt} and Ỹn be the partial maxima of

the corresponding iid sequence {Qt}, where Q1 has the same distribution as |ε2
1 − 1|D1. Since

|ε2
t − 1|Dt is regularly varying with index κ by Remark 7 and Breiman (1965), we have

lim inf
n→∞

P (Ỹn ≤ anx) = exp{−(ςx)−κ} > 0, for all x > 0,
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where ς =
[

E‖Dt‖κ
]1/κ

(see Chapter 3 of Embrechts et al.(1997)). By Theorem 3.7.2 of Lead-

better et al. (1983), we obtain that

lim
n→∞

P (Yn ≤ anx) = 1 (A.19)

provided ∆ = 0. However, it holds that for any xi > 0, yi > 0, i = 1, 2,

x1 + x2

y1 + y2
≥ min{x1

y1
,
x2

y2
}.

Hence,

‖Dt‖ ≥ ‖At‖ = ‖∂σ2
t (θ0)

∂θ

1

σ2
t

‖ ≥ 1√
2

1

σ2
t

[∂σ2
t (θ0)

∂α
+

∂σ2
t (θ0)

∂β

]

=
1√
2

∑t
j=1 βj−1

0 (ε2
t−j + 1)σ2

t−j

ω0
∑t

j=1 βj−1
0 + α0

∑t
j=1 βj−1

0 ε2
t−jσ

2
t−j + βt

0σ
2
0

=
1√
2

∑t−1
j=1 βj−1

0 (ε2
t−j + 1)σ2

t−j + βt−1
0 (ε2

0 + 1)σ2
0

∑t−1
j=1 βj−1

0 (ω0 + α0ε2
t−jσ

2
t−j) + βt−1

0 (ω0 + α0ε2
0σ

2
0 + β0σ2

0)

≥ 1√
2

min{
βj−1

0 (ε2
t−j + 1)σ2

t−j

βj−1
0 (ω0 + α0ε2

t−jσ
2
t−j)

;
βt−1

0 (ε2
0 + 1)σ2

0

βt−1
0 (ω0 + α0ε2

0σ
2
0 + β0σ2

0)
; 1 ≤ j ≤ t − 1}

≥ 1√
2

min{
σ2

t−j

ω0
,

1

α0
;
σ2

0/2

ω0
,

1

α0
,
σ2

0/2

β0σ2
0

; 1 ≤ j ≤ t − 1}

≥ 1√
2

min{1,
1

α0
,
1

2
,

1

2β0
}

= c0 > 0.

Note that, as n → ∞,

P (|ε2
t − 1| > an) ∼ P (ε2

t > an) ∼ n−1. (A.20)

Let F (·) be the marginal distribution of |ε2
t − 1|. For any x > 0, we have

n
(

1 − F (qn(y))
)

= nP
(

|ε2
t − 1| > qn(y)

)

=
nP

(

|ε2
t − 1| > qn(y)

)

nP (|ε2
t − 1| > an)

· nP (|ε2
t − 1| > an)

→ y, (A.21)

where y = (c−1
0 x)−κ and qn(y) = any−1/κ = c−1

0 anx. The convergence above holds because

|ε2
t − 1| is regularly varying with index κ and (A.20). By Assumption (A8) and (A.21), for any
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fixed y defined in (A.21) and integer k > 1,

n

[n/k]
∑

j=2

P
(

|ε2
1 − 1| > qn(y), |ε2

j − 1| > qn(y)
)

= n

[n/k]
∑

j=2

[

P
(

|ε2
1 − 1| > qn(y), |ε2

j − 1| > qn(y)
)

− P
(

|ε2
1 − 1| > qn(y)

)

P
(

|ε2
j − 1| > qn(y)

)

+P
(

|ε2
1 − 1| > qn(y)

)

P
(

|ε2
j − 1| > qn(y)

)

]

≤ n

[n/k]
∑

j=2

α(j − 1) + n[n/k]
(

1 − F (qn(y))
)2

≤ o(1) +
1

k − 1

(

1 − F (qn(y))
)2

→ y2

k − 1

as n → ∞, where [ ] denotes the integer part and α(j) is defined in Assumption (A8). Therefore,

lim
k→∞

lim sup
n→∞

n

[n/k]
∑

j=2

P
(

|ε2
1 − 1| > qn(y), |ε2

j − 1| > qn(y)
)

= 0 (A.22)

By Assumption (A8), (A.21), (A.22) and Theorem 3.4.1 of Leadbetter et al. (1983), we obtain

lim
n→∞

P
(

max
t≤n

|ε2
t − 1| ≤ c−1

0 anx
)

= exp{−(c−1
0 x)−κ}

Thus,

P (Yn ≤ anx) ≤ P
(

max
t≤n

|ε2
t − 1| ≤ c−1

0 anx
)

→ exp{−(c−1
0 x)−κ} < 1, n → ∞

which contradicts (A.19). Thus, ∆ > 0.

Proof of Theorem 4.

The proof for consistency in Theorem 1 and Theorem 2 of Jensen and Rahbek (2004 b) is

still valid for the consistency of θ̃. For the asymptotic normality, we follow the routine lines.

According to Lemma 12 -14 of of Jensen and Rahbek (2004 b), it is sufficient to deal with

ln(θ) ≡ ln(θ, ψ0). By Taylor expansion, we have

∂ln(θ0)

∂θ
=

∂ln(θ̃)

∂θ
+

∂2ln(θ̃1)

∂θ∂θ′
(θ0 − θ̃),
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Figure 1: Boxplots of AAE for LADE and QMLE when ω and η are fixed at their true values for model

(2.1).

where θ̃ is the minimizer of ln(θ) and θ1 is on the line from θ̃ to θ0. Notice that ∂ln(θ̃)
∂θ = 0 and

∂2ln(θ̃1)
∂θ∂θ′ = ∂2ln(θ0)

∂θ∂θ′ + oP (1) (see Jensen and Rahbek (2004 b) ), and ∂ln(θ0)
∂θ = 1

n

∑n
t=1(ε

2
t − 1)At,

we have

na−1
n (θ̃ − θ0)(

∂2ln(θ0)

∂θ∂θ′
+ oP (1)) = a−1

n

n
∑

t=1

(ε2
t − 1)At.

By Lemma 6, it is enough to prove that

a−1
n

n
∑

t=1

(ε2
t − 1)Dt

d−→ Wκ. (A.23)

By Lemma 7 and the conditions of this theorem, the assumptions of Theorem 7.1.1 of Straumann

(2005) hold. It follows that (A.23) holds. This completes the proof.
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Figure 2: Boxplots of AAE for LADE and QMLE when ω and η take different values for model (2.1).
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Figure 3: Differences between the nominal level and the real level of the confidence intervals when ω

and η take different values for model (2.1).
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