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Abstract. We establish analogues of Hardy and Littlewood’s integro-differen-

tial equation for Schrödinger-type operators on metric and discrete trees, based

on a generalised strong limit-point property of the graph Laplacian.

1. Introduction

In [21] Hardy and Littlewood introduced the inequality

(1.1)
(∫ ∞

0

|f ′(x)|2dx
)2

≤ 4
∫ ∞

0

|f(x)|2dx
∫ ∞

0

|f ′′(x)|2dx,

which holds for all functions f such that the right-hand side of (1.1) is finite.
Equality is attained when, for some ρ > 0 and A ∈ C,

f(x) = A exp
(
−ρx

2

)
sin
(
ρ
√

3
2
x− π

3

)
, x ∈ [0,∞).

Their famous book with Pólya [22] devotes three different proofs to this inequality.
Later, it was extended to what has become known as the HELP inequality, where
the second derivative f ′′ in (1.1) is replaced by a more general Sturm–Liouville
operator

M [f ] :=
1
w

(
−(pf ′)′ + qf

)
.

The resulting inequality

(1.2)

(∫ b

a

(
p|f ′|2 + q|f |2

))2

≤ K

∫ b

a

|f |2w
∫ b

a

∣∣M [f ]
∣∣2w.

with b > a > −∞, w > 0, p > 0 and q real-valued, and 1/p, q and w locally
integrable, was proposed by Everitt, who also gave, inter alia, a proof of a criterion
for the existence of the inequality (finite K) in [16]. It is assumed that M is
regular at a and singular at b and satisfies the so-called strong limit-point condition
at the singular endpoint. The proof in [16] is modelled on one of the proofs in
[22]. In addition, however, a proof which uses only the properties of extensions of
symmetric operators is given in [11, 13], while [2] presents an abstract proof based
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on linear relations. A feature of the results in [16] and [11] is that the criterion for
a finite constant K is given in terms of the Titchmarsh–Weyl m-function associated
with the differential expression M [f ] while the result [2] is applicable in a wider
context than (1.2). Many papers have been devoted to finding examples of the
HELP inequality for different functions p, q and w, and without any attempt at
completeness we mention [1, 5, 12, 17, 18, 20]. In addition to these analytic
results, we also note the numerical studies of the inequality in [7].

The inequality (1.2) has provided the motivation for studying inequalities of
this type associated with other differential expressions M [ · ]. For example, when
M is an even-order symmetric differential expression of order 2n, a criterion for the
existence of a HELP-type inequality is given in [3], while an equivalent result where
M is a Hamiltonian system is contained in [6]. WhenM is a second-order symmetric
difference expression, an equivalent theory to that in [11] is developed [4] and it
is shown that the so-called Copson inequality may be recovered. Recently, [24]
developed a very general theory involving only symmetric relations and abstract
boundary operators, and this has allowed examples of a HELP type inequality to
be found that are associated with block operator matrices. This latter theory will
be important in what we wish to report, and we summarise the main results of [24]
in section 2 below.

All the above examples of inequalities concern operators defined on the half line
or an infinite discrete set. Recently, there has been much interest in investigating
symmetric problems on trees and graphs and it is this that has provided the impetus
for the present work. We shall show that the abstract results reported in [24] can
be realised on both a metric (continuous) and a discrete (combinatoric) tree. In
particular we shall show that the HELP inequality is valid (finite K) for certain
operators M and invalid for others.

The paper is structured as follows. In section 2 we review the general framework
for HELP inequalities set up in [24], giving the result for the abstract inequality
which we shall need. In section 3 we introduce the notation for metric trees and show
that the limit-point/limit-circle classification for the tree Laplacian is intimately
connected with the finiteness or infinity of the volume of the tree. In this section, we
focus on symmetric functions on a symmetrically branching tree as an introductory
illustration. The following section 4, however, considers general trees of infinite
length without any symmetry restriction on the functions, showing that a strong
limit-point property holds. This is the essential ingredient for establishing the
HELP inequality in section 5; here we also present the explicit example of a regularly
branching tree. Finally, sections 6 and 7 concern infinite discrete trees, showing a
strong limit-point property and associated HELP inequality.

2. The abstract HELP inequality

In this section we recall an abstract HELP inequality from [24]. Since for
the HELP inequality on discrete trees we have to deal with linear relations rather
than operators, everything is formulated in terms of linear relations and abstract
boundary mappings. At the end of the section we specialise the results also to the
operator case.

Let H be a Hilbert space with scalar product ( ·, ·). A closed linear relation
in H is a closed subspace of H ⊕H, where we write 〈f ; g〉 for elements in H ⊕H;
see, e.g. [9]. A closed operator T can be identified with its graph and is therefore a
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closed linear relation with the property that 〈0; f〉 ∈ T implies f = 0. The adjoint
of a relation T is given by

T ∗ := {〈g; ĝ〉 | (f̂ , g) = (f, ĝ) for all 〈f ; f̂〉 ∈ T},
and a relation T is called symmetric if T ⊂ T ∗ and self-adjoint if T = T ∗.

For a closed symmetric relation S, the deficiency spaces are given by

Ñλ := {〈f ; f̂〉 ∈ S∗ | f̂ = λf},(2.1)

Nλ := P1Ñλ = {f ∈ H | 〈f ;λf〉 ∈ S∗} = ker(S∗ − λ)(2.2)

for λ ∈ C \ R, where P1 is the projection onto the first component in H ⊕ H.
It is well known that dim Nλ is constant on the upper and the lower half-plane
C±, respectively (see, e.g. [23]). The deficiency indices n+, n− are defined by
n± := dim Nλ, λ ∈ C±.

Let T be a closed linear relation in a Hilbert space H whose adjoint is symmet-
ric. The triple (K,Γ0,Γ1) is called a boundary triple for T (see, e.g. [10]) if K is a
Hilbert space with inner product (· , ·)K and Γi : T → K are linear mappings such
that

(2.3) (f̂ , g)− (f, ĝ) = (Γ1f̃ ,Γ0g̃)K − (Γ0f̃ ,Γ1g̃)K for f̃ = 〈f ; f̂〉, g̃ = 〈g; ĝ〉 ∈ T

and the mapping f̃ 7→ 〈Γ0f̃ ; Γ1f̃〉 from T into K⊕K is surjective. The Γi are called
boundary mappings. Relation (2.3) can be seen as an abstract Green identity.

One can easily show that for λ ∈ C \R, the restriction of Γ0 to Ñλ is bijective
onto K (see, e.g. [10]). Hence the following definition of the abstract Titchmarsh–
Weyl function makes sense:

(2.4) m(λ) := Γ1(Γ0 � Ñλ)−1,

which, for every λ, is an operator in K. Moreover, we set

(2.5) γ̃(λ) := (Γ0 � Ñλ)−1 : K → Ñλ

and define the Dirichlet form by

(2.6) D[f̃ , g̃] := (f̂ , g) + (Γ0f̃ ,Γ1g̃)K for f̃ = 〈f ; f̂〉, g̃ = 〈g; ĝ〉 ∈ T.

It follows from (2.3) that D is a symmetric form on T . Moreover, we set D[f̃ ] :=
D[f̃ , f̃ ] for f̃ ∈ T .

Remark 2.1. Assume that T is a closed linear relation in a Hilbert space H
whose adjoint is symmetric. Let Γ0,Γ1 : T → K, where K is another Hilbert space,
be linear mappings such that f̃ 7→ 〈Γ0f̃ ; Γ1f̃〉 is surjective, and letD be a symmetric
form on T such that

(f̂ , g) = D[f̃ , g̃]− (Γ0f̃ ,Γ1g̃)K, f̃ = 〈f ; f̂〉, g̃ = 〈g; ĝ〉 ∈ T ;

then (K,Γ0,Γ1) is a boundary triple and D the corresponding Dirichlet form. This
follows from

(f̂ , g)− (f, ĝ) = (f̂ , g)− (ĝ, f) = D[f̃ , g̃]− (Γ0f̃ ,Γ1g̃)K −D[g̃, f̃ ] + (Γ0g̃,Γ1f̃)K

= (Γ1f̃ ,Γ0g̃)K − (Γ0f̃ ,Γ1g̃)K,

which gives (2.3).

The following theorem from [24] gives a characterisation of an abstract HELP
inequality in terms of the Titchmarsh–Weyl function.
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Theorem 2.2. [24] Let T be a closed symmetric relation in H whose adjoint
is symmetric and let (K,Γ0,Γ1) be a corresponding boundary triple. Moreover, let
D be the Dirichlet form defined in (2.6) and m be the Titchmarsh–Weyl function
defined in (2.4). Then the following assertions are equivalent:

(i) there exists a positive constant C such that

(2.7)
∣∣D[f̃ ]

∣∣ ≤ C‖f‖ ‖f̂‖

for all f̃ = 〈f ; f̂〉 ∈ T ;
(ii) there exist θ+, θ− ∈ [0, π/2) such that

(2.8) Im(−λ2m(λ)) ≥ 0

for all λ ∈ C \ {0} with arg λ ∈ [θ+, π − θ−].
Let θ+, θ− be minimal in (ii) and put θ0 := max{θ+, θ−}. If the Dirichlet form does
not vanish identically on T (it can vanish identically only if θ0 = 0), then the best
possible constant in (2.7) is C = 1/ cos θ0.

Equality holds in (2.7) if and only if f = 0 or f̂ = 0 or

f̃ = λγ̃(λ)u− λγ̃(λ)u

with arg λ = θ+ (if θ0 = θ+) or arg λ = π − θ− (if θ0 = θ−) and

u ∈ ker(Im(λ2m(λ))).

Let us now consider the case that T is an operator, i.e. T ∗ is a densely defined
operator. In this case the boundary mappings are determined by the first compo-
nent of elements in T and can hence be defined just for elements in D(T ). The
abstract Green identity reduces to

(2.9) (Tf, g)− (f, Tg) = (Γ1f,Γ0g)K − (Γ0f,Γ1g)K, f, g ∈ D(T ).

The relations (2.4) and (2.5) have to be replaced by

m(λ) = Γ1(Γ0 � Nλ)−1 and γ(λ) = (Γ0 � Nλ)−1,

respectively, and the Dirichlet form is defined by

(2.10) D[f, g] = (Tf, g) + (Γ0f,Γ1g)K, f, g ∈ D(T ),

and D[f ] = D[f, f ]. The HELP inequality (2.7) reduces to the following inequality:

(2.11) |D[f ]| ≤ C‖f‖ ‖Tf‖, f ∈ D(T ),

and the cases of equality are f = 0, Tf = 0 and f = λγ(λ)u− λγ(λ)u with u as in
the theorem.

Let us recall some criteria for the validity of a HELP inequality in terms of the
behaviour of m at 0 and at infinity; see [24, section 4].

Proposition 2.3. Assume that the Titchmarsh–Weyl function m is scalar, i.e.
dimK = 1. The function m satisfies condition (2.8) if and only if it satisfies this
inequality locally both at 0 and at infinity. Moreover, the following is true.

(i) If m(λ) ∼ cλα for λ→∞ in a sector around the positive imaginary axis
with c 6= 0 and α ∈ [−1, 1] \ {0}, then (2.8) is satisfied at infinity.

(ii) Assume that the non-tangential limit limz→0m(z) =: m0 from the upper
half-plane exists. If m0 ∈ C\R, then (2.8) is satisfied at 0; if m0 ∈ R\{0},
then (2.8) is not satisfied at 0. If, in addition, m is analytic at 0 and
m0 = 0, then (2.8) is satisfied at 0.
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3. Symmetric functions on a binary radial tree

In this section, we consider a binary radial tree, i.e. a tree which, starting from
a first interval, splits into two branches at each vertex, with the jth generation
intervals (of which there are 2j) having equal length lj (j ∈ N0). As usual, we
require functions in the domain of the Laplacian on the tree to be absolutely con-
tinuous with absolutely continuous derivative on each tree edge (interval), with the
requirement of continuity and the Kirchhoff condition (sum of directed derivatives
vanishes) at each vertex.

A symmetric function u on the tree is a function which depends only on the
distance from the root vertex. If we define

xj :=
j−1∑
k=0

lk, j ∈ N0,

and L := lim
j→∞

xj (the length of the tree), then a symmetric function can be iden-

tified with a function on the interval [0, L) which is continuous throughout; the
Kirchhoff condition translates into the jump condition for the derivative

u′(xj−) = 2u′(xj+).

To remove these discontinuities of the derivative, we define

mk := 2−klk, k ∈ N0, yj :=
j−1∑
k=0

mk, j ∈ N0,

and v(yj + η) = u(xj + 2jη) for η ∈ [0,mj ]: then clearly v is a continuous function
on [0, B), where B := lim

j→∞
yj , and on the interval (yj , yj+1) we have

v(yj + η) = u(xj + 2jη), v′(yj + η) = 2ju′(xj + 2jη),

v′′(yj + η) = 4ju′′(xj + 2jη).

In particular,

v′(yj−) = 2j−1u′(xj−1 + 2j−1mj−1−) = 2j−1u′(xj−) = 2ju′(xj+)

= 2ju′(xj + 2j0+) = v′(yj+),

so v′ is continuous as well.
The space L2(Γ)symm of square-integrable symmetric functions on the tree

clearly corresponds to L2([0, L), w) with the weight

w(x) := 2j (x ∈ [xj , xj+1)),

which is the total branching number at distance x from the root. Now, with w̃(y) :=
4j (y ∈ [yj , yj+1)), we have that u ∈ L2([0, L), w) ⇔ v ∈ L2([0, B), w̃); indeed,∫ L

0

|u|2(x)w(x) dx =
∞∑
j=0

∫ xj+1

xj

|u(x)|2 2j dx =
∞∑
j=0

2j
∫ lj

0

|u(xj + ξ)|2 dξ

=
∞∑
j=0

2j
∫ mj

0

|u(xj + 2jη)|2 2j dη =
∞∑
j=0

4j
∫ mj

0

|v(yj + η)|2 dη

=
∞∑
j=0

4j
∫ yj+1

yj

|v(y)|2 dy =
∫ B

0

|v|2(y) w̃(y) dy.
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The Laplacian on the tree gives rise to the differential equation

−u′′ = λu

on [0, L) — without weight, but with jumps in the derivative at xj . The corre-
sponding function v satisfies the differential equation (without further conditions)

−v′′ = λw̃v

on the interval [0, B). This is a differential equation of Sturm–Liouville type, and
we have Weyl’s Alternative for the singular end-point B: this point is in the limit-
circle case if for all complex λ, every solution is in L2([0, B), w̃); otherwise it is in
the limit-point case.

Taking λ = 0, every solution of the above differential equation is of the form
v(y) = ay+ b with constants a, b. If

∫ B
0
w̃ = ∞, then the constant solution (a = 0)

is not in L2([0, B), w̃), so we have the limit-point case. If, on the other hand∫ B
0
w̃ < ∞, then B < ∞ (as w̃ ≥ 1), so all solutions are bounded and hence in

L2([0, B), w̃), and we have the limit-circle case. We observe that this classification is
intimately connected with the volume of the tree, defined as the sum of the lengths
of all vertices: indeed, the volume is

vol(Γ) =
∞∑
j=0

2j lj =
∞∑
j=0

4jmj =
∫ B

0

w̃.

One can show that the limit-point case at B is equivalent to the property that

lim
y→B

(
f ′(y)ḡ(y)− f(y)ḡ′(y)

)
= 0

for all f, g in the maximal domain of the Sturm–Liouville operator [14]. If the two
terms in this limit tend to zero separately, one speaks of a strong limit-point case.

We now show that if the tree has infinite volume, the end-point B is in the
strong limit-point case. Our proof is heavily inspired by [15] (see also [19]).

Theorem 3.1. Let D := {f : [0, B) → C | f, f ′ ∈ ACloc[0, B), f, f ′′/w̃ ∈
L2([0, B), w̃)}. Then lim

y→B
f ′(y)ḡ(y) = 0 (f, g ∈ D).

Proof. Let f ∈ D; then by integration by parts∫ y

0

|f ′|2 = f ′(y)f̄(y)− f ′(0)f̄(0)−
∫ y

0

f ′′

w̃
f̄ w̃.

As the l.h.s. is increasing in y, it either converges to a finite limit or tends to ∞ as
y → B. In the latter case, we conclude that lim

y→B
Re f ′(y)f̄(y) = ∞ (the other terms

on the r.h.s. are bounded), so that (|f |2)′ → ∞: then |f |2 is eventually bounded
below by a positive constant and thus cannot be in L2([0, B), w̃) — a contradiction.

Hence
B∫
0

|f ′|2 < ∞ and lim
y→B

f ′(y)f̄(y) exists for each f ∈ D. Consequently,∫ B
0
f ′ḡ′ exists for all f, g ∈ D, and from∫ y

0

f ′ḡ′ = f ′(y)ḡ(y)− f ′(0)ḡ(0)−
∫ y

0

f ′′

w̃
ḡ w̃

we conclude that the limit lim
y→B

f ′(y)ḡ(y) exists as well.
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It remains to show that the limit is 0. Define W (y) :=
y∫
0

w̃ (y ∈ [0, B)); then

lim
y→B

W (y) = ∞. Let f, g ∈ D; then

f ′(y)√
W (y)

=
f ′(0)√
W (y)

+
1√
W (y)

∫ y

0

f ′′

w̃

√
w̃
√
w̃

≤ o(1) +

√∫ y

0

∣∣∣∣f ′′w̃
∣∣∣∣2w̃

√∫ y
0
w̃√

W (y)
= O(1)

as y → B. Now if lim inf
y→B

|g(y)|2W (y) > 0, then there exist y0 ∈ (0, B) and δ > 0

such that |g(y)|2W (y) ≥ δ for y ∈ [y0, B). Then

∞ >

∫ B

0

|g|2w̃ ≥
∫ y

y0

|g|2W w̃

W
≥ δ

∫ y

y0

w̃

W
= δ
(
logW (y)− logW (y0)

)
→∞

as y → B — a contradiction.
Hence there is a sequence zn → B such that |g(zn)|2W (zn) → 0 (n→∞), so

f ′(zn)ḡ(zn) =
f ′(zn)√
W (zn)

√
W (zn)ḡ(zn) → 0 (n→∞).

As we had already shown that the limit of f ′ḡ exists, it must be 0. �

We remark that the methods and conclusions of this section are very similar
to some results in [8], but it seems that the proof given there for the limit-point
property if the tree volume is infinite is rather more complicated than ours.

4. The strong limit-point property on metric trees of infinite length

In this section, we consider a general tree Γ of infinite length, i.e. such that any
regular path in the tree can be extended to a regular path of infinite length. How-
ever, we impose no restrictions or symmetry conditions on the branching numbers
and edge lengths. Taking the proof of Theorem 3.1 as a guide, we show that the
Laplacian on such a tree has a generalised strong limit-point property where the
singular end-point is replaced by the limit set of infinite ends of the tree.

Let D := {f : Γ → C | f, f ′ a.c. on edges, f continuous, Kirchhoff condition at
each vertex, f, f ′′ ∈ L2(Γ)}.

For x ∈ Γ, denote by |x| the distance of x from the root, and let Γr :=
{
x ∈

Γ
∣∣ |x| ≤ r

}
(r > 0). Then we have the following theorem (note that here f, g are

general functions in D with no assumptions of symmetry).

Theorem 4.1. For all f, g ∈ D,

lim
r→∞

∑
|x|=r

f(x)ḡ′(x) = 0.

Proof. For f ∈ D, we have∫
Γr

|f ′|2 = −
∫

Γr

f ′′f̄ +
∑
|x|=r

f ′(x)f̄(x)− f ′(0)f̄(0)

by integration by parts; the contributions of the inner vertices vanish because of
the Kirchhoff condition. The integral on the l.h.s. is increasing in r, so it either
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converges to a finite limit or tends to infinity as r → ∞. In the latter case, this
implies that ∑

|x|=r

(|f |2)′(x) = 2 Re
∑
|x|=r

f ′(x)f̄(x) →∞ (r →∞).

Hence, if we set F (r) :=
∑
|x|=r

|f |2(x), we have F ′(r) → ∞ (r → ∞), so F is

eventually bounded below by a positive constant, and∫
Γ

|f |2 =
∫ ∞

0

F (r) dr = ∞,

a contradiction.
Thus we conclude that the integral on the l.h.s. has a finite limit as r tends to

infinity. But then
lim
r→∞

∑
|x|=r

(|f |2)′(x)

exists as well. If this limit is non-zero, then it must be positive since F (r) ≥ 0; then∑
|x|=r |f |2 will be eventually growing at least linearly, contradicting f ∈ L2(Γ).

Thus we find that the limit of
∑
|x|=r

f ′(x)f̄(x) as r →∞ exists and that

2 Re lim
r→∞

∑
|x|=r

f ′(x)f̄(x) = lim
r→∞

∑
|x|=r

(|f |2)′(x) = 0.

In order to show that the imaginary part of the above limit vanishes as well, we
proceed as follows. Let S be the minimal operator associated with the (negative)
Laplacian on the tree; D(S) := {f ∈ C0(Γ) | f is C∞ on each edge, Kirchhoff
condition at each vertex}. Then clearly S is symmetric, and as for a single interval
(cf. [26, Theorem 3.6 b]) one can show that D(S∗) = D. Furthermore, denote by
A the operator S∗ restricted by a Dirichlet boundary condition at the tree root, a
one-dimensional restriction.

To estimate the deficiency indices of the operator S∗, consider a solution f ∈
D(A) of −f ′′ = if. Then, integrating by parts as above and using the boundary
condition, we find ∫

Γ

|f ′|2 = i

∫
Γ

|f |2 + lim
r→∞

∑
|x|=r

f ′(x)f̄(x).

Here the l.h.s. is real, the r.h.s. purely imaginary! Hence f ′ = 0 on the graph edges,
and so f is constant. From the differential equation, it must be identically zero.

An analogous argument applies to −f ′′ = −if . Therefore the kernel of A ± i
is trivial, and we conclude that S∗ has deficiency indices at most (1, 1).

Consequently, the Dirichlet operator A is self-adjoint. For each f ∈ D(A), we
have

Im lim
r→∞

∑
|x|=r

f ′(x)f̄(x) = Im
(∫

Γ

|f ′|2 −
∫

Γ

(Af)f̄
)

= 0.

As the elements of D differ from those of D(A) only at the tree root, we conclude
that

lim
r→∞

∑
|x|=r

f ′(x)f̄(x) = 0 (f ∈ D).
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Now if f, g ∈ D, then

0 = lim
r→∞

∑
|x|=r

(f + g)′(x)(f + g)(x) = lim
r→∞

∑
|x|=r

(g′(x)f̄(x) + f ′(x)ḡ(x)),

0 = lim
r→∞

∑
|x|=r

(f + ig)′(x)(f + ig)(x) = i lim
r→∞

∑
|x|=r

(g′(x)f̄(x)− f ′(x)ḡ(x)),

whence the assertion follows. �

5. The HELP inequality on metric trees

Let Γ be a tree with infinite length as in Section 4 and q be a bounded function
on Γ. The maximal operator T is defined by

Tf = −f ′′ + qf

with domain

D(T ) =
{
f ∈ L2(Γ)

∣∣ f, f ′ a.c. on edges, f continuous and satisfies

Kirchhoff condition at each vertex, f ′′ ∈ L2(Γ)
}
,

which is equal to D in the previous section.

Lemma 5.1. Let Γ and T be as above. The triple (C,Γ0,Γ1) with

Γ0f := f ′(0), Γ1f := −f(0), f ∈ D(T ),

is a boundary triple for T . The corresponding Dirichlet form is given by

D[f, g] =
∫

Γ

(
f ′g′ + qfg

)
, f, g ∈ D(T ).

Proof. It is clear that the mapping f 7→ 〈Γ0f ; Γ1f〉 maps D(T ) onto C2. Let
f, g ∈ D(T ) and Γr :=

{
x ∈ Γ

∣∣ |x| ≤ r
}
; then∫

Γr

(−f ′′ + qf)g =
∫

Γr

(f ′g′ + qfg) + f ′(0)g(0)−
∑
|x|=r

f ′(x)g(x).

Letting r →∞ and using Theorem 4.1 we obtain

(Tf, g) =
∫

Γ

(−f ′′ + qf)g =
∫

Γ

(f ′g′ + qfg) + f ′(0)g(0) = D[f, g]− Γ0f · Γ1g.

This together with Remark 2.1 shows all assertions of the lemma. �

The deficiency subspaces Nλ, λ ∈ C \ R, are one-dimensional (see the proof of
Theorem 4.1). Let ψλ be a solution of Tψλ = λψλ, normalised such that Γ0ψλ =
ψ′λ(0) = 1. Then ψλ spans Nλ, and the Titchmarsh–Weyl function is given by

(5.1) m(λ) = Γ1ψλ = −ψλ(0).

With this we can formulate a criterion for the validity of a HELP inequality on a
metric tree.

Theorem 5.2. Let the metric tree Γ and the operator T be as above and m the
Titchmarsh–Weyl function defined in (5.1). Then the following are equivalent:
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(i) there exists a positive constant K such that

(5.2)

(∫
Γ

(
|f ′|2 + q|f |2

))2

≤ K

∫
Γ

|f |2
∫

Γ

∣∣−f ′′ + qf
∣∣2

for all f ∈ D(T );
(ii) there exist θ+, θ− ∈ [0, π/2) such that

(5.3) Im(−λ2m(λ)) ≥ 0

for all λ ∈ C \ {0} with arg λ ∈ [θ+, π − θ−].
Let θ+, θ− be minimal in (ii) and put θ0 := max{θ+, θ−}. Then the best possible
constant in (5.2) is K = 1/(cos θ0)2.

Let AD and AN be the Dirichlet and Neumann operators, i.e. the restrictions
of T to functions that satisfy f(0) = 0 or f ′(0) = 0. Equality holds in (5.2) if and
only if 0 is an eigenvalue of AD or AN and f is a corresponding eigenfunction,
or f = α Im(λψλ) with α ∈ C and λ such that Im(λ2m(λ)) = 0 and arg λ = θ+ if
θ0 = θ+ or arg λ = π − θ− if θ0 = θ−.

Proof. The theorem follows almost immediately from Theorem 2.2 since (5.2)
is the square of (2.7). Concerning the cases of equality: if Tf = 0, then (5.2) implies
D[f ] = 0, and hence by (2.10) also Γ0f = 0 or Γ1f = 0. The third case of equality
in Theorem 2.2 yields (with c ∈ C)

f = λγ(λ)c− λγ(λ)c = λcψλ − λcψλ = 2ic Im(λψλ).
�

Let us now consider a regularly branching tree with branching number b and
assume that q(x) is a symmetric function, i.e. depends only on |x|. Then also
ψλ(x) depends only on |x|. For assume that ψλ(x1) 6= ψλ(x2) with |x1| = |x2|.
Let πΓ : Γ → Γ be a bijection that swaps two branches that contain x1 and x2,
respectively. Then ψλ◦πΓ is also in Nλ, and ψλ and ψλ◦πΓ are linearly independent,
which is a contradiction to the fact that dim Nλ = 1.

To calculate the Titchmarsh–Weyl function more explicitly, consider a binary
tree (i.e. b = 2) where all edges are of equal length l and q is the same on every
edge. Let ψλ be the defect element with Γ0ψλ = ψ′λ(0) = 1. Since ψλ is symmetric,
we can identify it with a function on [0,∞). Let θ( · ;λ), φ( · ;λ) be the solutions of
−y′′ + qy = λy on [0, l] with

θ(0;λ) = 1, θ′(0;λ) = 0, φ(0;λ) = 0, φ′(0;λ) = 1.

Then for n ∈ N,(
ψλ
(
(n+ 1)l+

)
ψ′λ
(
(n+ 1)l+

))=

(
ψλ
(
(n+ 1)l−

)
1
2ψ

′
λ

(
(n+ 1)l−

))=

(
θ(l−;λ) φ(l−;λ)

1
2θ
′(l−;λ) 1

2φ
′(l−;λ)

)
︸ ︷︷ ︸

=:A(λ)

(
ψλ(nl+)

ψ′λ(nl+)

)
.

Since dim Nλ = 1, we have ψλ(x+ l) = µ(λ)ψλ(x) with some µ(λ) ∈ C and hence
m(λ) = −ψλ(0) = −ψλ(nl+)

ψ′
λ(nl+) , which implies that µ(λ) is an eigenvalue of A(λ) with

eigenvector
(
m(λ)
−1

)
. Since detA(λ) = 1

2 , we have (we write θ(l;λ) for θ(l−;λ))

(5.4) µ(λ)2 −
(
θ(l;λ) +

1
2
φ′(l;λ)

)
µ(λ) +

1
2

= 0.
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As ψλ ∈ L2(Γ), µ(λ) must be the solution of (5.4) with |µ(λ)| < 1
2 . The eigenvalue

equation for A(λ), the form of the eigenvector and (5.4) show that

m(λ) =
φ(l;λ)

θ(l;λ)− µ(λ)
=

4φ(l;λ)

2θ(l;λ)− φ′(l;λ)±
√(

2θ(l;λ) + φ′(l;λ)
)2 − 8

.

If l = 1 and q ≡ −τ with τ ∈ R, we obtain

m(λ) =
sin

√
λ+ τ√

λ+ τ
(
cos

√
λ+ τ − µ(λ)

) ,
where

µ(λ) =
1
4

(
3 cos

√
λ+ τ ±

√
9 cos2

√
λ+ τ − 8

)
is chosen such that |µ(λ)| < 1

2 .
To determine whether there is a HELP inequality, we use Proposition 2.3. In a

sector around the positive imaginary axis we have m(λ) ∼ i/
√
λ for λ→∞. Hence

(2.8) is satisfied at infinity. The non-tangential limit from the upper half-plane
m0 = limz→0m(z) exists for every τ . It is non-real if and only if 9 cos2

√
λ+ τ < 8;

moreover, m0 = 0 exactly for τ = nπ, n = 1, 2, . . . . So according to Proposition 2.3
there is a HELP inequality if and only if

τ ∈
((

(n− 1)π + arccos
√

8
3

)2

,
(
nπ − arccos

√
8

3

)2
)

for some n ∈ N(5.5)

or τ = n2π2 for some n ∈ N.

These intervals are exactly the interiors of the continuous spectrum of the operator
with τ = 0, cf. [25]. For the values in the first two intervals we calculated the best
constants numerically by directly testing the condition (2.8); see figure 1. Note
that the first two intervals in (5.5) are (0.115, 7.85) and (12.12, 35.32). If τ is in
the first interval, then there are cases of equality only in the interval (0.115, 0.49).
There are no cases of equality if τ is in the second interval.

0 5 10 15 20 25 30 35

2

4

6

8

10

12

14

Figure 1. The first two bands of the continuous problem
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6. The strong limit-point property on discrete trees

In this section, we consider a discrete tree. This means that the edges of the
tree do not have a length, and the functions under consideration are defined only
on the discrete set of vertices V . For each vertex x ∈ V , its distance |x| from the
root vertex (which we denote by 0) is just the integer number of edges connecting
this vertex to the root. The set A(x) of vertices adjacent to x consists of one vertex,
which we denote by x−, such that |x−| = |x| − 1, and a set A+(x) of vertices y
such that |y| = |x|+1 and y− = x. We denote by N+(x) the number of elements in
A+(x). We generally assume that the tree has infinite length, i.e. that N+(x) > 0
for all x ∈ V .

For a function f : V → C we then consider the (negative) discrete Laplacian
L0f , defined as

L0f(x) = −
∑

y∈A(x)

(f(y)− f(x)) (x ∈ V ).

We also define the derivative (backward difference) of f as f ′(0) = 0 and

f ′(x) := f(x)− f(x−)

for x ∈ V \ {0}.
As usual, we denote by `2(V ) the space of complex-valued functions which are

square-summable on the discrete tree.

Theorem 6.1. Let f ∈ `2(V ) such that L0f ∈ `2(V ). Then f ′ ∈ `2(V ) as well.

We remark that if the branching number N+ is bounded throughout the tree,
i.e. if there is N ∈ N such that N+(x) ≤ N (x ∈ V ), then the statement of Theorem
6.1 is trivial, as the derivative is then a bounded linear operator in `2(V ). However,
this is not the case if N+ is unbounded.

Proof. Let f, g : V → C and r ∈ N. Then we have∑
0<|x|≤r

f ′(x)g′(x) =
∑

0<|x|≤r

(
f(x)− f(x−)

)(
g(x)− g(x−)

)
=

∑
0<|x|≤r

(
f(x)− f(x−)

)
g(x)−

∑
0≤|x|<r

∑
y∈A+(x)

(
f(y)− f(x)

)
g(x)

= −
∑

0<|x|<r

(
f(x−)− f(x) +

∑
y∈A+(x)

(
f(y)− f(x)

))
g(x)

+
∑
|x|=r

(
f(x)− f(x−)

)
g(x)−

∑
y∈A+(0)

(
f(y)− f(0)

)
g(0)

=
∑

0<|x|<r

(L0f)(x)g(x) +
∑
|x|=r

f ′(x)g(x)−
∑

y∈A+(0)

f ′(y)g(0).(6.1)

Now if we assume that f = g ∈ `2(V ) and L0f ∈ `2(V ), we find, by applying
the Cauchy–Schwarz inequality to the first and the second term on the right-hand
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side of the above identity, that for any r ∈ N,∑
|x|=r

|f ′(x)|2 ≤
∑

0<|x|≤r

|f ′(x)|2

≤ ‖L0f‖ ‖f‖+
√∑
|x|=r

|f ′(x)|2
√∑
|x|=r

|f(x)|2 +

∣∣∣∣∣∣
∑

y∈A+(0)

f ′(y)f̄(0)

∣∣∣∣∣∣ .(6.2)

Hence, setting

ar :=
√∑
|x|=r

|f ′(x)|2, br :=
√∑
|x|=r

|f(x)|2,

and observing that lim
r→∞

br = 0, we conclude that a2
r ≤ const+ brar, or equivalently(

ar −
br
2

)2

≤ const +
b2r
4

(r ∈ N).

Therefore the sequence (ar)r∈N is bounded, and again by (6.2),
∑

0<|x|≤r
|f ′(x)|2

remains bounded as r →∞, and the assertion of the theorem follows. �

As an immediate consequence, we obtain the following strong limit-point prop-
erty for the discrete tree.

Corollary 6.2. Let D := {f ∈ `2(V ) | L0f ∈ `2(V )}. Then

lim
r→∞

∑
|x|=r

f ′(x) ḡ(x) = 0.

Proof. We have∑
|x|=r

f ′(x)ḡ(x) ≤
√∑
|x|=r

|f ′(x)|2
√∑
|x|=r

|g(x)|2,

and the assertion follows from

‖f ′‖2 =
∞∑
r=0

∑
|x|=r

|f ′(x)|2 <∞, ‖g‖2 =
∞∑
r=0

∑
|x|=r

|g(x)|2 <∞.

�

7. The HELP inequality on discrete trees

Consider a discrete tree as in the previous section such that N+(x) > 0 for
every x ∈ V ; N+(x), A(x) and A+(x) are defined as at the beginning of section 6.
Moreover, let q be a bounded function on V and

(Lf)(x) := −
∑

y∈A(x)

(
f(y)− f(x)

)
+ q(x)f(x).

Define the minimal operator Tmin in `2(V ) by

D(Tmin) =
{
f ∈ `2(V )

∣∣ f(x) = 0 for almost all x; f(0) = 0
}
,

(Tminf)(x) = (Lf)(x), x ∈ V, f ∈ D(Tmin).

Lemma 7.1. The adjoint of Tmin is given by the relation

T :=
{
〈f ; f̂〉 ∈ `2(V )⊕ `2(V )

∣∣ f̂(x) = (Lf)(x) for all x ∈ V \ {0}
}
.
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Note that f̂(0) is arbitrary; so T is a proper relation.

Proof. Let x0 ∈ V \ {0} and define

gx0(x) =

{
1, x = x0,

0, x 6= x0,

which is in D(Tmin); then we have

(Tmingx0)(x) =


|A(x0)|+ q(x0), x = x0,

−1, x ∈ A(x0),
0, otherwise.

If f̃ = 〈f ; f̂〉 ∈ T ∗min, then for x0 ∈ V \ {0}:

f̂(x0) = (f̂ , gx0) = (f, Tmingx0)

=
(
|A(x0)|+ q(x0)

)
f(x0)−

∑
y∈A(x0)

f(y) = (Lf)(x0),

which implies that f̃ ∈ T .
On the other hand, if f̃ = 〈f ; f̂〉 ∈ T , then (f̂ , g) = (f, Tming) for all g ∈

D(Tmin) since all these g are linear combinations of gx0 ; hence f̃ ∈ T ∗min. �

Since Tmin ⊂ T , the operator Tmin is symmetric. In the next lemma a boundary
triple is constructed.

Lemma 7.2. The triple (C,Γ0,Γ1) is a boundary triple for T , where the bound-
ary mappings Γ0,Γ1 : T → C are defined by

Γ0f̃ := −f̂(0)−
∑

y∈A+(0)

f ′(y),

Γ1f̃ := f(0),
f̃ = 〈f ; f̂〉 ∈ T.

The corresponding Dirichlet form is given by

D[f̃ , g̃] :=
∑
x6=0

f ′(x)g′(x) +
∑
x∈V

q(x)f(x)g(x), f̃ = 〈f ; f̂〉, g̃ = 〈g; ĝ〉 ∈ T.

Proof. Let r ∈ N and f̃ = 〈f ; f̂〉, g̃ = 〈g; ĝ〉 ∈ T ; then according to Corol-
lary 6.2 the second term on the r.h.s. of (6.1) converges to 0 for r → ∞, and
hence ∑

x6=0

f ′(x)g′(x) +
∑
x∈V

q(x)f(x)g(x) =
∑
x6=0

(Lf)(x)g(x)−
∑

y∈A+(0)

f ′(y)g(0),

which implies

(f̂ , g) = f̂(0)g(0) +
∑
x6=0

(Lf)(x)g(x)

=
∑
x6=0

f ′(x)g′(x) +
∑
x∈V

q(x)f(x)g(x) +
(
f̂(0) +

∑
y∈A+(0)

f ′(y)
)
g(0)

= D[f̃ , g̃]− Γ0f̃ · Γ1g̃.
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Since D is a symmetric form on T and f̃ 7→ 〈Γ0f̃ ; Γ1f̃〉 is surjective, this shows
that Γi are boundary mappings for T and D is the corresponding Dirichlet form;
see Remark 2.1. �

The previous lemma implies that ker Γ0∩ker Γ1 is a symmetric relation (actually
it is an operator since f determines f̂(0) by Γ0f̃ = 0) whose adjoint is T ; cf., e.g.
[24, Lemma 2.1]. The deficiency subspace Ñλ for λ ∈ C\R, defined in (2.1), is one-
dimensional and spanned by a non-trivial element ψ̃λ = 〈ψλ; ψ̂λ〉 = 〈ψλ;λψλ〉 ∈ T ,
i.e.

Lψλ(x) = λψλ(x), x ∈ V \ {0},
which we normalise such that Γ0ψ̃λ = 1, i.e.

−ψ̂λ(0)−
∑

y∈A+(0)

ψ′λ(y) = (N+(0)− λ)ψλ(0)−
∑

y∈A+(0)

ψλ(y) = 1.

The function γ̃(λ) defined in (2.5) is a mapping from C onto Ñλ that maps α ∈ C
onto αψ̃λ; the Titchmarsh–Weyl function is a multiplication operator in C, which
we can identify with a scalar function:

(7.1) m(λ) = Γ1ψ̃λ = ψλ(0).

Now we can give a criterion for a HELP inequality on a discrete tree.

Theorem 7.3. Let the discrete tree Γ and L be as above and m the Titchmarsh–
Weyl function defined in (7.1). Then the following are equivalent:

(i) there exists a positive constant K such that

(7.2)

( ∑
x∈V \{0}

∣∣f ′(x)∣∣2 +
∑
x∈V

q(x)
∣∣f(x)

∣∣2)2

≤ K
∑
x∈V

∣∣f(x)
∣∣2 ∑
x∈V \{0}

∣∣(Lf)(x)
∣∣2

for all f ∈ `2(V ) such that Lf ∈ `2(V );
(ii) there exist θ+, θ− ∈ [0, π/2) such that

(7.3) Im(−λ2m(λ)) ≥ 0

for all λ ∈ C \ {0} with arg λ ∈ [θ+, π − θ−].
Let θ+, θ− be minimal in (ii) and put θ0 := max{θ+, θ−}. Then the best possible
constant in (7.2) is K = 1/(cos θ0)2.

Equality holds in (7.2) if and only if 0 is an eigenvalue of ker Γ0 or ker Γ1 and
f is a corresponding eigenvector, or f = α Im(λψλ) with α ∈ C and λ such that
Im(λ2m(λ)) = 0 and arg λ = θ+ if θ0 = θ+ or arg λ = π − θ− if θ0 = θ−.

Proof. We can apply Theorem 2.2, which yields the equivalence of (ii) and
the existence of a positive constant C such that

(7.4)

( ∑
x∈V \{0}

∣∣f ′(x)∣∣2 +
∑
x∈V

q(x)
∣∣f(x)

∣∣2)2

≤ C2
∑
x∈V

|f(x)|2
(∣∣f̂(0)

∣∣2 +
∑

x∈V \{0}

∣∣(Lf)(x)
∣∣2)

for every f̃ = 〈f ; f̂〉 ∈ T . If f ∈ `2(V ) such that Lf ∈ `2(V ), then 〈f ; f̂〉 ∈ T where
f̂(0) = 0 and f̂(x) = (Lf)(x) for x 6= 0. Hence (7.4) implies (7.2) withK = C2. The
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converse implication is trivial. Since the Dirichlet form does not vanish identically,
the best constant in (7.2) is always given by K = C2 = 1/(cos θ0)2.

Now consider the cases of equality. If f̂ = 0, then also D[f̃ ] = 0, which implies
that Γ0f̃ · Γ1f̃ = 0. Hence f̃ = 〈f ; 0〉 ∈ ker Γ0 or f̃ = 〈f ; 0〉 ∈ ker Γ1. The third
case in Theorem 2.2 leads to f = α Im(λψλ) because of the form of γ̃(λ). �

Let us now consider a regularly branching tree for which N+(x) = b, x 6= 0,
and N+(0) = 1, where b ∈ N, b > 1. So V consists of vertices of the form 0 = (0; 0)
and (n; k), n = 1, 2, . . . ; k = 1, . . . , bn−1. Here |(n; k)| = n and A+((n; k)) =
{(n+1; (k−1)b+ l) | l ∈ {1, . . . , b}} for n > 0 and A+((0; 0)) = {(1; 1)}. Moreover,
let us assume that q(x) ≡ −τ is constant. In this case the deficiency subspaces
consist of symmetric functions only. For assume that Ñλ contains a non-symmetric
element f̃ = 〈f ; f̂〉 for λ ∈ C \R. Then f differs on two vertices x1, x2 in the same
generation, i.e. for the same n. Let g be the function on V that is obtained from f
by swapping the two branches that contain x1 and x2, respectively. Obviously, also
g̃ = 〈g;λg〉 ∈ Ñλ, and f̃ and g̃ are linearly independent, which is a contradiction
to the fact that dim Ñλ = 1. Now it is easy to calculate the Titchmarsh–Weyl
function.

Proposition 7.4. The Titchmarsh–Weyl function m(λ) for a discrete regularly
branching tree with branching number b and q(x) ≡ −τ is given by

(7.5) m(λ) =
1

1− λ− α(λ)
, λ ∈ C \ R,

where α(λ) is the unique number

(7.6)
b+ 1− τ − λ±

√
(b+ 1− τ − λ)2 − 4b
2b

for which |α(λ)| < 1/
√
b.

Proof. First we find the element ψ̃λ = 〈ψλ;λψλ〉 that spans the deficiency
space Ñλ and satisfies Γ0ψ̃λ = 1. Let h(n) := ψλ(n; k) for n = 0, 1, . . . ; this is well
defined since ψλ is symmetric. The equality Lψλ = λψλ implies

−bh(n+ 1)− h(n− 1) + (b+ 1)h(n)− τh(n) = λh(n), n = 1, 2, . . . ,

which is solved by h(n) = Aαn1 + Bαn2 , n = 0, 1, . . . , where α1, α2 are the two
solutions of the equation bα2 − (b+ 1− τ − λ)α+ 1 = 0, i.e. the numbers

b+ 1− τ − λ±
√

(b+ 1− τ − λ)2 − 4b
2b

such that |α1| < 1/
√
b and |α2| > 1/

√
b. The choice of αi is possible since α1α2 =

1/b and α1 +α2 = (b+ 1− τ −λ)/b /∈ R for λ /∈ R, and hence |α1| 6= |α2|. We have
to choose B = 0 in order that ψλ ∈ `2(V ) as an easy calculation shows. Since

Γ0ψ̃λ = −λψλ(0; 0)− ψλ(1; 1) + ψλ(0; 0) = A(−λ− α1 + 1),

we have to take A = 1/(−λ − α1 + 1). Hence m(λ) = Γ1ψ̃λ = A, which is (7.5) if
we observe that α(λ) = α1. �

Now let us consider for which τ there is a HELP inequality. We use again
Proposition 2.3. Since m(λ) ∼ −1/λ, the condition (2.8) is satisfied at infinity.
The non-tangential limit from the upper half-plane m0 = limz→0m(z) exists for
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every τ . It is non-real if and only if the expression under the square root in (7.6)
is negative, which is exactly the case if τ ∈

(
b+ 1− 2

√
b, b+ 1 + 2

√
b
)
. Otherwise,

m0 6= 0; hence there is a HELP inequality if and only if

τ ∈
(
b+ 1− 2

√
b, b+ 1 + 2

√
b
)
.

For b = 2 and every τ ∈ (3− 2
√

2, 3 + 2
√

2 ) ≈ (0.17157, 5.8284) we calculated
the best constant K in the HELP inequality numerically using (7.3); see figure 2.
There are no cases of equality.

0 1 2 3 4 5
0

50

100

150

200

Figure 2. The best constants for the discrete problem in depen-
dence of τ
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